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characterization

Definitions

Any deliberate action that is meant to trigger
an unjustifiably favorable relevance or importance
for some Web page, considering the page's true value
[Gydngyi and Garcia-Molina, 2005]

any attempt to deceive a search engine’s relevancy algorithm
or simply

anything that would not be done
if search engines did not exist.
[Perkins, 2001]
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Single-level farms can be detected by searching groups of
nodes sharing their out-links [Gibson et al., 2005]
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Research goal
Statistical analysis of link-based spam
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L. Becchetti, Streamed algorithms ~N

C. Castillo, .

D. D‘:‘;t;t‘; Breadth-first and depth-first search
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R. Baeza-Yates Count of neighbors

Symmetric algorithms

S FAEE (Strongly) connected components

characterization . .
Approximate count of neighbors
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General functional ranking

Let P the row-normalized version of the citation matrix of a
graph G = (V,E)

A functional ranking [Baeza-Yates et al., 2006] is a
link-based ranking algorithm to compute a scoring vector W
of the form:

B > damping(t) _,
W = Z TP .
t=0

There are many choices for damping(t), including simply a
linear function that is as good as PageRank in practice

damping(t) = (1 — a)a’
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Truncated PageRank

Reduce the direct contribution of the first levels of links:

damping(t)
1 >
T t
0 t<T
damping(t) = -
ping(t) Cat t>T

v No extra reading of the graph after PageRank
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D. Donato, 6: S . RIi
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General algorithm

Using rank Require: N: number of nodes, 0 < o < 1: damping factor, T> —1: distance for
propagation and

Probabilistic truncation
et fori: 1... N do {Initialization}
Link-Based R[|] — (]_ — CX)/((O(T+1)N)
Spam Detection if >0 then
L. Becchetti, Score[i] < 0
€. Casidlley else {Calculate normal PageRank}
D. Donato, . .
S. Leonardi and Score[ll - R[']
R. Baeza-Yates end if
end for

distance =1
: while not converged do
Aux «— 0

GROPNEOCXNOTRE W

Truncated for src: 1 ... N do {Follow links in the graph}
PageRank for all link from src to dest do
Aux[dest] < Aux[dest] + R[src]/outdegree(src)
end for

16:  end for

17: fori: 1... N do {Apply damping factor o}

18: R[i] < Aux[i] x«

19: if distance > T then {Add to ranking value}

20: Score[i] « Score[i] + R[i]

21: end if

22:  end for

23:  distance = distance +1
24 end while
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Truncated PageRank T:
Truncated PageRank T:

-6 =

10° 10° 10" 10 10
Normal PageRank Normal PageRank

Truncated
PageRank

Comparing PageRank and Truncated PageRank with T =1
and T = 4.

The correlation is high and decreases as more levels are
truncated.
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Counting
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Probabilistic counting

1 0
1 0
0 0 .
0 1 Pr_opag?tlon of
0 1 bits using the
0 0 “OR” operation
Target Count bits set
page to estimate
supporters

PP OoOOOR

Improvement of ANF algorithm [Palmer et al., 2002] based on
probabilistic counting [Flajolet and Martin, 1985]
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General algorithm

Require: N: number of nodes, d: distance, k: bits
1: fornode: 1 ... N, bit: 1... kdo

2:  INIT(node,bit)

3: end for
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Counting
supporters

General algorithm

Require: N: number of nodes, d: distance, k: bits

e T
N o

Y o NO RN

: fornode: 1... N, bit: 1... kdo
INIT(node,bit)

end for

. for distance : 1...d do {lteration step}

Aux «— 0y

for src: 1 ... N do {Follow links in the graph}
for all links from src to dest do

Aux|[dest] < Aux[dest] OR V[src, ]

end for

end for

V «— Aux

. end for
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Counting
supporters

General algorithm

Require: N: number of nodes, d: distance, k: bits

[ S

14:
15:
16:

Y o NO RN

: fornode: 1... N, bit: 1... kdo
INIT(node,bit)
end for
. for distance : 1...d do {lteration step}
Aux «— 0y
for src: 1 ... N do {Follow links in the graph}
for all links from src to dest do
Aux|[dest] < Aux[dest] OR V[src, ]
end for
end for
V «— Aux
: end for
: for node: 1...N do {Estimate supporters}

Supporters[node] < ESTIMATE( V[node, ] )
end for
return Supporters
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Our estimator
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Our estimator

Initialize all bits to one with probability e
by the independence of the i — th component X;'s we have,

P[X,' — 1] - 1— (1 _ 6)neighbors(node)7
Estimator: neighbors(node) = log(;_ (1 - M)
Problem: neighbors(node) can vary by orders of magnitudes
as node varies.
This means that for some values of ¢, the computed value of
ones(node) might be k (or 0, depending on neighbors(node))
with relatively high probability.
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Adaptive estimator

if we knew neighbors(node) and chose € = we

would get:

1
neighbors(node)

1
ones(node) ~ (1 — > k ~ 0.63k,
e

Adaptive estimation

Repeat the above process for e =1/2,1/4,1/8, ..., and look
for the transitions from more than (1 — 1/e)k ones to less
than (1 — 1/e)k ones.
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Iteration

15 iterations for estimating the neighbors at distance 4 or less
less than 25 iterations for all distances up to 8.
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Error

rate

Average Relative Error
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5,344 hosts manually classified (6% of the hosts)




Test collection
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L. Becchetti, U.K. collection
C. Castillo,
D. Donato, 18.5 million pages downloaded from the .UK domain

S. Leonardi and
R. Baeza-Yates

5,344 hosts manually classified (6% of the hosts)

Classified entire hosts:
v A few hosts are mixed: spam and non-spam pages

Experiments X More coverage: sample covers 32% of the pages
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Automatic classifier

e We extracted (for the home page and the page with
Probabilistic maximum PageRank) PageRank, Truncated PageRank at

counting for

Link-Based 2...4, Supporters at 2...4

Spam Detection

L. Becchetti, We measured:
C. Castillo,
D. Donato, .
S, (Lesmeh aid .. # of spam hosts classified as spam
R. Baeza-Yates PreClSlon = -
# of hosts classified as spam
# of spam hosts classified as spam
Recall = .

# of spam hosts

Experiments
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Experiments

Automatic classifier

We extracted (for the home page and the page with
maximum PageRank) PageRank, Truncated PageRank at
2...4, Supporters at 2...4

We measured:

. # of spam hosts classified as spam
Precision =

# of hosts classified as spam

# of spam hosts classified as spam
Recall = .

# of spam hosts

and the two types of errors in spam classification

. # of normal hosts classified as spam
False positive rate =

# of normal hosts

i # of spam hosts classified as normal
False negative rate = .

# of spam hosts
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Single-technique classifier

Classifier based on TrustRank: uses as features the PageRank,
the estimated non-spam mass, and the
estimated non-spam mass divided by PageRank.

Classifier based on Truncated PageRank: uses as features the
PageRank, the Truncated PageRank with
truncation distance t = 2,3,4 (with t =1 it
would be just based on in-degree), and the
Truncated PageRank divided by PageRank.

Classifier based on Estimation of Supporters: uses as features
the PageRank, the estimation of supporters at a
given distance d = 2,3, 4, and the estimation of
supporters divided by PageRank.
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L. Becchetti, Classifiers Spam class False False
S (pruning with M = 5) Prec. Recall Pos. Neg.

D. Donato,
R BainYares TrustRank 082 050 21% 50%
Trunc. PageRank t =2 0.85 050 1.6% 50%

Trunc. PageRank t=3 084 047 16% 53%

Trunc. PageRank t =4 0.79 045 22% 55%

Est. Supporters d = 2 078 060 32% 40%

Est. Supporters d = 3 0.83 064 24% 36%

Est. Supporters d =4 0.86 0.64 2.0% 36%

Experiments



Comparison of single-technique classifier (M=30)
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L. Becchetti, Classifiers Spam class False False
S (pruning with M = 30)  Prec. Recall Pos. Neg.

D. Donato,
R Baavae  TrustRank 080 049 23% 51%
Trunc. PageRank t =2 0.82 043 18% 57%
Trunc. PageRank t=3 081 042 18% 58%
Trunc. PageRank t =4 077 043 24% 57%
Est. Supporters d = 2 076 052 3.1% 48%
Est. Supporters d =3 0.83 0.57 2.1% 43%
Est. Supporters d = 4 0.80 057 26% 43%

Experiments
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Combined classifier

Spam class False False

Pruning Rules Precision Recall Pos.  Neg.
M=5 49 0.87 0.80 2.0% 20%
M=30 31 0.88 076 1.8% 24%
No pruning 189 0.85 079 26% 21%
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Summary of classifiers

Precision

False Positives

(a) Precision and recall of spam detection
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L. Becchetti,

C. Castillo, . . 0,

D. Donato, ¥ Link-based statistics to detect 80% of spam
S. Leonardi and
R Baczaates X' No magic bullet in link analysis

X Precision still low compared to e-mail spam filters
¥ Measure both home page and max. PageRank page

M Host-based counts are important

Next step: combine link analysis and content analysis

Conclusions



Thank you!
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