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What is on the Web?

Information

+ Porn + On-line casinos + Free movies +
Cheap software + Buy a MBA diploma + Prescription -free
drugs + V!-4-gra + Get rich now now now!!!

Graphic: www.milliondollarhomepage.com
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Web spam (keywords + links)
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Fake search engine
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Problem: “normal” pages that are spam
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Problem: “normal” pages that are spam

Some content is introduced
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Problem: borderline pages
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Definitions

Any deliberate action that is meant to trigger
an unjustifiably favorable relevance or importance

for some Web page, considering the page’s true value
[Gyöngyi and Garcia-Molina, 2005]

any attempt to deceive a search engine’s relevancy algorithm

or simply

anything that would not be done
if search engines did not exist.

[Perkins, 2001]



Using rank
propagation and

Probabilistic
counting for
Link-Based

Spam Detection

L. Becchetti,
C. Castillo,
D. Donato,

S. Leonardi and
R. Baeza-Yates

Motivation

Spam pages
characterization

Truncated
PageRank

Counting
supporters

Experiments

Conclusions

Definitions

Any deliberate action that is meant to trigger
an unjustifiably favorable relevance or importance

for some Web page, considering the page’s true value
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Link farms

Single-level farms can be detected by searching groups of
nodes sharing their out-links [Gibson et al., 2005]
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Link−based spam

[Fetterly et al., 2004] hypothesized that studying the
distribution of statistics about pages could be a good way of
detecting spam pages:

“in a number of these distributions, outlier values are
associated with web spam”

Research goal

Statistical analysis of link-based spam
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Idea: count “supporters” at different distances

Number of different nodes at a given distance:

.UK 18 mill. nodes .EU.INT 860,000 nodes
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High and low-ranked pages are different
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Metrics

Graph algorithms

Streamed algorithms

Symmetric algorithms

All shortest paths, centrality, betweenness, clustering coefficient... 

(Strongly) connected components
Approximate count of neighbors
PageRank, Truncated PageRank, Linear Rank
HITS, Salsa, TrustRank

Breadth-first and depth-first search
Count of neighbors
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General functional ranking

Let P the row-normalized version of the citation matrix of a
graph G = (V ,E )
A functional ranking [Baeza-Yates et al., 2006] is a
link-based ranking algorithm to compute a scoring vector W
of the form:

W =
∞∑

t=0

damping(t)

N
Pt .

There are many choices for damping(t), including simply a
linear function that is as good as PageRank in practice

damping(t) = (1− α)αt
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Truncated PageRank

Reduce the direct contribution of the first levels of links:

damping(t) =

{
0 t ≤ T

Cαt t > T

V No extra reading of the graph after PageRank
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General algorithm

Require: N: number of nodes, 0 < α < 1: damping factor, T≥ −1: distance for
truncation

1: for i : 1 . . . N do {Initialization}
2: R[i] ← (1− α)/((αT+1)N)
3: if T≥ 0 then
4: Score[i] ← 0
5: else {Calculate normal PageRank}
6: Score[i] ← R[i]
7: end if
8: end for

9: distance = 1
10: while not converged do
11: Aux ← 0
12: for src : 1 . . . N do {Follow links in the graph}
13: for all link from src to dest do
14: Aux[dest] ← Aux[dest] + R[src]/outdegree(src)
15: end for
16: end for
17: for i : 1 . . . N do {Apply damping factor α}
18: R[i] ← Aux[i] ×α
19: if distance > T then {Add to ranking value}
20: Score[i] ← Score[i] + R[i]
21: end if
22: end for
23: distance = distance +1
24: end while
25: return Score



Using rank
propagation and

Probabilistic
counting for
Link-Based

Spam Detection

L. Becchetti,
C. Castillo,
D. Donato,

S. Leonardi and
R. Baeza-Yates

Motivation

Spam pages
characterization

Truncated
PageRank

Counting
supporters

Experiments

Conclusions

General algorithm

Require: N: number of nodes, 0 < α < 1: damping factor, T≥ −1: distance for
truncation

1: for i : 1 . . . N do {Initialization}
2: R[i] ← (1− α)/((αT+1)N)
3: if T≥ 0 then
4: Score[i] ← 0
5: else {Calculate normal PageRank}
6: Score[i] ← R[i]
7: end if
8: end for
9: distance = 1
10: while not converged do
11: Aux ← 0
12: for src : 1 . . . N do {Follow links in the graph}
13: for all link from src to dest do
14: Aux[dest] ← Aux[dest] + R[src]/outdegree(src)
15: end for
16: end for
17: for i : 1 . . . N do {Apply damping factor α}
18: R[i] ← Aux[i] ×α
19: if distance > T then {Add to ranking value}
20: Score[i] ← Score[i] + R[i]
21: end if
22: end for
23: distance = distance +1
24: end while
25: return Score



Using rank
propagation and

Probabilistic
counting for
Link-Based

Spam Detection

L. Becchetti,
C. Castillo,
D. Donato,

S. Leonardi and
R. Baeza-Yates

Motivation

Spam pages
characterization

Truncated
PageRank

Counting
supporters

Experiments

Conclusions

Truncated PageRank vs PageRank
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Probabilistic counting
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probabilistic counting [Flajolet and Martin, 1985]
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General algorithm

Require: N: number of nodes, d: distance, k: bits
1: for node : 1 . . . N, bit: 1 . . . k do
2: INIT(node,bit)
3: end for

4: for distance : 1 . . . d do {Iteration step}
5: Aux ← 0k

6: for src : 1 . . . N do {Follow links in the graph}
7: for all links from src to dest do
8: Aux[dest] ← Aux[dest] OR V[src,·]
9: end for

10: end for
11: V ← Aux
12: end for
13: for node: 1 . . .N do {Estimate supporters}
14: Supporters[node] ← ESTIMATE( V[node,·] )
15: end for
16: return Supporters
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Our estimator

Initialize all bits to one with probability ε

by the independence of the i − th component Xi ’s we have,

P[Xi = 1] = 1− (1− ε)neighbors(node),

Estimator: neighbors(node) = log(1−ε)

(
1− ones(node)

k

)
Problem: neighbors(node) can vary by orders of magnitudes
as node varies.
This means that for some values of ε, the computed value of
ones(node) might be k (or 0, depending on neighbors(node))
with relatively high probability.
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Adaptive estimator

if we knew neighbors(node) and chose ε = 1
neighbors(node) we

would get:

ones(node) '
(

1− 1

e

)
k ' 0.63k,

Adaptive estimation

Repeat the above process for ε = 1/2, 1/4, 1/8, . . . , and look
for the transitions from more than (1− 1/e)k ones to less
than (1− 1/e)k ones.
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less than 25 iterations for all distances up to 8.
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Ours 64 bits, epsilon−only estimator
Ours 64 bits, combined estimator
ANF 24 bits × 24 iterations (576 b×i)
ANF 24 bits × 48 iterations (1152 b×i)
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Test collection

U.K. collection

18.5 million pages downloaded from the .UK domain

5,344 hosts manually classified (6% of the hosts)

Classified entire hosts:

V A few hosts are mixed: spam and non-spam pages

X More coverage: sample covers 32% of the pages
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Automatic classifier

We extracted (for the home page and the page with
maximum PageRank) PageRank, Truncated PageRank at
2 . . . 4, Supporters at 2 . . . 4

We measured:

Precision =
# of spam hosts classified as spam

# of hosts classified as spam

Recall =
# of spam hosts classified as spam

# of spam hosts
.

and the two types of errors in spam classification

False positive rate =
# of normal hosts classified as spam

# of normal hosts

False negative rate =
# of spam hosts classified as normal

# of spam hosts
.
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Single-technique classifier

Classifier based on TrustRank: uses as features the PageRank,
the estimated non-spam mass, and the
estimated non-spam mass divided by PageRank.

Classifier based on Truncated PageRank: uses as features the
PageRank, the Truncated PageRank with
truncation distance t = 2, 3, 4 (with t = 1 it
would be just based on in-degree), and the
Truncated PageRank divided by PageRank.

Classifier based on Estimation of Supporters: uses as features
the PageRank, the estimation of supporters at a
given distance d = 2, 3, 4, and the estimation of
supporters divided by PageRank.
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Comparison of single-technique classifier (M=5)

Classifiers Spam class False False
(pruning with M = 5) Prec. Recall Pos. Neg.

TrustRank 0.82 0.50 2.1% 50%

Trunc. PageRank t = 2 0.85 0.50 1.6% 50%
Trunc. PageRank t = 3 0.84 0.47 1.6% 53%
Trunc. PageRank t = 4 0.79 0.45 2.2% 55%

Est. Supporters d = 2 0.78 0.60 3.2% 40%
Est. Supporters d = 3 0.83 0.64 2.4% 36%
Est. Supporters d = 4 0.86 0.64 2.0% 36%



Using rank
propagation and

Probabilistic
counting for
Link-Based

Spam Detection

L. Becchetti,
C. Castillo,
D. Donato,

S. Leonardi and
R. Baeza-Yates

Motivation

Spam pages
characterization

Truncated
PageRank

Counting
supporters

Experiments

Conclusions

Comparison of single-technique classifier (M=30)

Classifiers Spam class False False
(pruning with M = 30) Prec. Recall Pos. Neg.

TrustRank 0.80 0.49 2.3% 51%

Trunc. PageRank t = 2 0.82 0.43 1.8% 57%
Trunc. PageRank t = 3 0.81 0.42 1.8% 58%
Trunc. PageRank t = 4 0.77 0.43 2.4% 57%

Est. Supporters d = 2 0.76 0.52 3.1% 48%
Est. Supporters d = 3 0.83 0.57 2.1% 43%
Est. Supporters d = 4 0.80 0.57 2.6% 43%
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Combined classifier

Spam class False False
Pruning Rules Precision Recall Pos. Neg.

M=5 49 0.87 0.80 2.0% 20%
M=30 31 0.88 0.76 1.8% 24%

No pruning 189 0.85 0.79 2.6% 21%
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Summary of classifiers

(a) Precision and recall of spam detection

(b) Error rates of the spam classifiers
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Conclusions

V Link-based statistics to detect 80% of spam

X No magic bullet in link analysis

X Precision still low compared to e-mail spam filters

V Measure both home page and max. PageRank page

V Host-based counts are important

Next step: combine link analysis and content analysis
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