

Using Cache Algorithms to Choose Shortcut Links

Justin Brickell
Inderjit S. Dhillon Dharmendra S. Modha

Using Cache Algorithms to Choose Shortcut Links (Outline)

- Introduction
- A simple algorithm for choosing shortcuts
- Caching analogy
- Experimental Results
- Shortcuts on the front page
- Conclusions

Motivation

- Visitors to websites do not always find what they need on the first page they load
- Navigational links move visitors from their current location to their desired destination
- These links are chosen manually by the author of each page
- Can we supplement these manually chosen links by adding dynamic links automatically?

THE UNIVERSITY OF TEXAS AT AUSTIN

Shortcutting

Add links based on recent access patterns

Selecting Shortcut Links

- Shortcuts on page p should point to pages q accessed after p within the same session
- Adding all such pages q is not a good solution
 - Users would be overwhelmed with thousands of links
 - Need to limit the number of shortcuts on each page
- What features characterize a good shortcut?
 - Recency
 - Frequency

A Naïve Shortcut Selection Algorithm

- 1. Initialize a 2-D array of counters, with one row and one column for each page.
 - A[i][j] is the number of times page j is accessed after page i
- 2. For each page p in each visit, find all pages q that occur **after** p. If edge pq is not a permanent webgraph edge, increment A[p][q]
- 3. For each page, add links to the k pages in its row with the highest counts
- This algorithm was suggested by Perkowitz in his PhD thesis
- Transformation is performed nightly and website is updated

Webkod Logers (Shop or) kneepge piscovery on the Web, Aug. 20, 2006, at KDD 2006, Philadelphia, PA, USA

Improving the Naïve Algorithm

- Problem: pages that are infrequently accessed may wind up with poorly-selected shortcuts, or no shortcuts
- Solution: rather than replace all shortcuts each day, replace individual shortcuts when a new shortcut is added
 - Choosing which shortcut to replace is analogous to the cache-replacement problem

The Cache Analogy

- Users sessions
 ⇔ Processes
- Web pages
 ← Memory locations
- Shortcut destinations
 ⇔ Cache

A Cache-Based Shortcut Selection Algorithm

- 1. Initialize an array of caches of size k, with one cache for each page
- 2. For each page *p* in each visit, find all pages *q* that occur *after p*.
 - 1. If the edge pq is not a permanent webgraph edge, then register a hit for page q on the cache for page p (may involve replacement)
 - 2. Update the links on page *p* to reflect the new cache contents
- Any replacement policy will work
- Replacement policies retain pages most likely to be accessed in the future
- Uses O(n) memory

Improvement: Batched Caching

- Problem: Caching algorithms update cache on every miss
 - This is too frequent for shortcuts
- Solution: Delay updates
 - "Virtual" cache is updated normally
 - "Real" cache is copied from virtual cache periodically

Improvement: Shadow Caching

- Memory constraints are less restrictive than in a typical caching application
- Can make the virtual cache larger than the real cache
- When real cache is updated, populate it with the k "best" virtual cache items
- How do we choose the "best" items?
 - Simple: access count from prior time period
 - Better: linear combination of old score and access count from prior time period

Experiments

- UTCS access logs from Apr 17 May 25
 - Robot accesses are removed
 - Long sessions with over 50 pages removed
 - Short sessions with under 3 pages removed
 - 89,000 sessions
 - 3.5 million edges in the sessions
 - Length *k* session has (*k* choose 2) edges
 - 336,000 distinct urls

Replacement Policies Tested

- LRU Least Recently Used
- LFU Least Frequently Used
- ARC Adaptive Replacement Cache
 - Maintains two caches to balance between frequently used and recently used pages
- GDF Greedy Dual Frequency
 - Like LFU, but with some recency information
- MPP Most Popular Policy
 - This is the naïve popularity algorithm

Results: Most sessions benefit from shortcuts

 Caching selection outperforms naïve popularity selection

Results: Many edges traversed are available as shortcuts

WebKDD 2006 Workshop on knowledge كالعام المادية والمادية والمادي

Shortcuts on the Front Page

- The front page serves as a portal
 - Users who load the front page may be interested in any content on the site
- Ignore sessions, build shortcuts from all pages that are accessed
- Rate success by portion of pages accessed that were shortcut linked on front page

THE UNIVERSITY OF TEXAS AT AUSTIN

Example of Front Page Shortcuts

WebKDD 2006 Workshop

File last modified Sat Nov 6 22:29:15 2004 Questions to webmaster@cs.utexas.edu UTCS Home | UT Home | Copyright | Privacy | Accessibility | Browsers D 2006, Philadelphia, PA, USA

Front Page Results

- "Static" refers to the original UTCS front page content
- Naïve mpp performs well, since the top pages receive many hits during each time period
 - Still requires O(n²) memory
- "Offline" chooses the best possible shortcuts with

 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 2006, at KDD 2006, Philadelphia, PA, USA

 KNOWLEGGE Of the Tuture

Conclusions

- Shortcutting is a simple, effective way of helping site visitors find the information they need
- Adding only a few links provides connections to almost every page a visitor would want to visit
- Our algorithms are memory efficient and outperform the basic popularity algorithm

Future Work

- How quickly can users get to their intended destination?
 - This assumes that there is a single intended destination, and that we can identify it
- How often are shortcut links actually used?
 - Deployment, and user study

THE UNIVERSITY OF TEXAS AT AUSTIN

Questions?

WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 2006, at KDD 2006, Philadelphia, PA, USA