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Abstract

The expanding and dynamic nature of the Web poses enormous challenges to most data mining techniques that try to
extract patterns from Web data, such as Web usage and Web content. While scalable data mining methods are expected to
cope with the size challenge, coping with evolving trends in noisy data in a continuous fashion, and without any unnec-
essary stoppages and reconfigurations is still an open challenge. This dynamic and single pass setting can be cast within the
framework of mining evolving data streams. The harsh restrictions imposed by the “you only get to see it once” constraint
on stream data calls for different computational models that may furthermore bring some interesting surprises when it
comes to the behavior of some well known similarity measures during clustering, and even validation. In this paper, we
study the effect of similarity measures on the mining process and on the interpretation of the mined patterns in the harsh
single pass requirement scenario. We propose a simple similarity measure that has the advantage of explicitly coupling the
precision and coverage criteria to the early learning stages. Even though the cosine similarity, and its close relative such as
the Jaccard measure, have been prevalent in the majority of Web data clustering approaches, they may fail to explicitly
seek profiles that achieve high coverage and high precision simultaneously. We also formulate a validation strategy and
adapt several metrics rooted in information retrieval to the challenging task of validating a learned stream synopsis in
dynamic environments. Our experiments confirm that the performance of the MinPC similarity is generally better than
the cosine similarity, and that this outperformance can be expected to be more pronounced for data sets that are more
challenging in terms of the amount of noise and/or overlap, and in terms of the level of change in the underlying pro-
files/topics (known sub-categories of the input data) as the input stream unravels. In our simulations, we study the task
of mining and tracking trends and profiles in evolving text and Web usage data streams in a single pass, and under different
trend sequencing scenarios.
© 2005 Elsevier B.V. All rights reserved.
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The Web has been a relentless generator of data
that comes in a variety of forms, ranging from Web
content data that forms the substance of most Web
documents, to the daily trails left by visitors as they
surf through a Website, also known as Web usage
data. Hidden in this data, often lurk interesting
knowledge or patterns such as Web user access
trends or profiles that can be used to achieve various
objectives, including supporting customer relation-
ship management, and personalization of the user’s
experience on a Website.

Recently, data mining techniques have been
applied to extract usage patterns from Web log data
[3,6,18-21,24-26,29,30]. Most of these efforts have
proposed using various data mining or machine
learning techniques to model and understand Web
user activity. In [29], clustering was used to segment
user sessions into clusters or profiles that can later
form the basis for personalization. In [21], the
notion of an adaptive Website was proposed, where
the user’s access pattern can be used to automati-
cally synthesize index pages. The work in [6] is based
on using association rule discovery as the basis for
modeling Web user activity, while the approach
proposed in [3] used Markov Random Fields to
model Web navigation patterns for the purpose of
prediction. The work in [30] proposed building data
cubes from Web log data, and later applying online
analytical processing (OLAP) and data mining on
the cube model. [25] presents a complete Web Usage
Mining (WUM) system that extracts patterns from
Web log data with a variety of data mining tech-
niques. New relational clustering techniques with
robustness to noise were used to discover user pro-
files that can overlap in [20,19], while a density-
based evolutionary clustering technique is proposed
to discover multi-resolution and robust user profiles
n [18]. The K Means algorithm was used in [24] to
segment user sequences into different clusters. An
extensive survey of different approaches to Web
usage mining can be found in [26]. It is interesting
to note that an incremental way to update a Web
usage mining model was proposed in [3]. In this
approach, the user navigation records are modeled
by a hypertext probabilistic grammar (HPG) whose
higher probability generated strings correspond to
the user’s preferred trails. The model had the advan-
tages of being self-contained (i.e., has all statistics
needed to mine all the data accumulated), as well
as compact (the model was in the form of a tree
whose size depends on the number of items instead
of the number of users, which enhances scalability).

The HPG model was incremental, in the sense that
when more log data became available, it could be
incorporated in the model without the need of
rebuilding the grammar from scratch.

Unfortunately, with the exception of [3] (which
provided a scalable way to model Web user naviga-
tion, but did not explicitly address the change/
evolvability aspect of this data), all the aforemen-
tioned methods assume that the entire pre-processed
Web session data could reside in main memory.
This can be a disadvantage for systems with limited
main memory in case of huge Web session data,
since the I/O operations would have to be extensive
to shuffle chunks of data in and out, and thus com-
promise scalability. Today’s Websites are a source
of an exploding amount of clickstream data that
can put the scalability of any data mining technique
into question.

Moreover, the Web access patterns on a Website
are very dynamic in nature, due not only to the
dynamics of Website content and structure, but also
to changes in the users’ interests, and thus their nav-
igation patterns. The access patterns can be
observed to change depending on the time of day,
day of week, and according to seasonal patterns
or other external events. As an alternative to locking
the state of the Web access patterns in a frozen state
depending on when the Web log data was collected,
an intelligent Web usage mining system should be
able to continuously learn in the presence of such
conditions without ungraceful stoppages, reconfigu-
rations, or restarting from scratch. For all these rea-
sons, Web usage data should be considered as a
reflection of a dynamic environment which there-
fore requires dynamic learning of the user access
patterns. This dynamic setting can be cast within
the framework of mining evolving data streams.
Data streams are massive data sets that arrive with
a throughput so high that the data can only be ana-
lyzed sequentially and in a single pass. The discov-
ery of useful patterns from data streams is referred
to as stream data mining. In particular, a recent
explosion of applications generating and analyzing
data streams has added new unprecedented chal-
lenges for clustering algorithms if they are to be able
to track changing clusters in streams using only the
new data points because storing past data is not
even an option [1,2,5,10]. Because most data
streams unleash data points or measurements in a
non-arbitrary order, they are inherently attached
to a temporal aspect, meaning that the patterns that
could be discovered from them follow dynamic
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trends, and hence they are different from traditional
static data sets that are very large. Such data streams
are referred to as evolving data streams. For these
reasons, even techniques that are scalable for huge
data sets may not be the answer for mining evolving
data streams, because these techniques always strive
to work on the entire data set without making any
distinction between new data and old data, and
hence cannot be expected to handle the notion of
emerging and obsolete patterns. The harsh restric-
tions imposed by the “you only get to see it once”
constraint on stream data calls for different compu-
tational models and different validation methodolo-
gies that may depart from the ones used in
traditional data mining. In [16], we proposed a new
immune system inspired approach for clustering
noisy multi-dimensional stream data, called
TECNO-STREAMS (tracking evolving clusters in
noisy streams), that has the advantages of scalability,
robustness and automatic scale estimation. TECNO-
STREAMS is a scalable clustering methodology that
gleams inspiration from the natural immune system
to be able to continuously learn and adapt to new
incoming patterns by detecting an unknown number
of clusters in evolving noisy data in a single pass.
Data is presented in a stream, and is processed
sequentially as it arrives, in a single pass over the
data stream. A stream synopsis is learned in a con-
tinuous fashion. The stream synopsis consists of a
set of synopsis nodes or cluster representatives with
additional properties, such as spatial scale and age,
that offer a summary of the data stream that is con-
cise, and yet accurate. Because the data stream is a
dynamic source of data, the stream synopsis itself
is dynamic, and will change to reflect the status of
the current data stream. The stream synopsis is con-
strained so that its size does not exceed a maximal
limit that is predefined depending on the application,
and preference will be given to newer parts of the
data stream in occupying synopsis nodes that repre-
sent them. Obsolete parts of the summary that corre-
spond to older parts of the data stream are gradually
purged from the synopsis, and delegated to second-
ary storage memory.

1.1. Contributions of this paper

Within the context of mining evolving Web click-
streams, we apply the mechanics of TECNO-
STREAMS to continuously discover an evolving
profile synopsis, consisting of synopsis nodes. Each
synopsis node is an entity summarizing a basic Web

usage trend, also referred to as profile, that is char-
acterized by the following descriptors: typical repre-
sentative user session summary (a bag of URL
indices), spatial scale or dispersion in the usage pat-
tern around this representative (this is the amount
of variance in the distance from compatible data
stream input sessions and this node: it is also a mea-
sure of error or variance that reflects the accuracy of
the synopsis node as a representative of the input
data stream), and age (time since the profile’s birth).

In this paper, we study the task of tracking
emerging topics/clusters in noisy and evolving text
data sets (text mining), and in mining evolving user
profiles from Web clickstream data (Web usage
mining) in a single pass, and under different trend
sequencing scenarios. A trend sequencing scenario
corresponds to a specific way to order the Web ses-
sions or the text documents as they are presented as
input to the stream mining algorithm. If the user
sessions or the text documents are known to belong
to certain profiles or classes/document categories,
also heretoforth called trends, then one particular
sequencing scenario may be obtained by presenting
the sessions or documents according to a particular
sequence of the trends, such as first the sessions/doc-
uments from the first trend, then the sessions/docu-
ments from the second trend, and so on. Reversing
the order of the trends will naturally result in a dif-
ferent sequence. Similarly, the sessions/documents
can be presented in the same order as they were
received in the original data stream. In this case,
we refer to the sequencing scenario as ‘“‘regular
order”, ‘“chronological order”, or “‘natural chrono-
logical order”.

We propose a validation methodology and several
validation metrics that are rooted in information
retrieval, and that are useful to assess the quality of
the stream synopsis as a summary of an input data
stream from the points of view of precision, coverage
(or recall), and adaptability to the evolution of the
stream. Coverage or recall of a synopsis node mea-
sures the proportion of items matching the input data
in its vicinity. High coverage means that the node
covers most of the items in the input. On the other
hand, high precision means that the synopsis node
covers only the correct items in the input data, and
not any additional superfluous items due to noise or
other artifacts. Coverage and precision generally
work in contradicting ways. or example, the best cov-
erage is obtained when a single synopsis node con-
tains all the items in the data, but then its precision
will be very low. And vice versa, a node that consists
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of only one of the correct items will have 100% preci-
sion, but its coverage will suffer. Our validation pro-
cedure is useful within the framework of mining
evolving Web data streams. Unlike existing frame-
works which study mostly static data sets, our
adopted validation strategy is based on taking into
account both the content and the changing nature
(hence the temporal aspect) of the stream data mining
task, so that the synopsis discovered by data mining,
is evaluated from the perspectives of precision and
coverage throughout the entire temporal span of the
experiment, and not just at one specific time, such as
the end of the stream. This philosophy of validation
gives rise to interesting retrospective validation mea-
sures that are rooted in some classical information
retrieval metrics, but that evaluate the learned synop-
sis according to two different dimensions: (i) the tem-
poral dimension which corresponds to the order in
which the input data stream arrives, and (ii) the
ground-truth content categories from which the
input data is known to originate. In the case of
Web user sessions/clickstreams, the categories corre-
spond to user trends, profile, or classes; while in the
case of text documents, the categories correspond
to known document class labels. Since, the emphasis
is on learning an accurate synopsis of an arbitrary
and unlabeled dynamic data stream, these categories
are only used during the final validation phase, and
not in the actual learning/data mining.

Our previous discussion emphasized the impor-
tance of both precision and coverage for assessing
the quality of the learned synopsis. This is not sur-
prising since these measures have always been the

Trend Sequencing
Scanario

Data &
Trends/

profiles

main validation metrics used in information retrie-
val. However, this also led us to the ask the follow-
ing question: If these metrics are so critical in
assessing quality, then why not use “them” to guide
the search for a better synopsis. Since each synopsis
node is evaluated based on the density of similar
data inputs in its vicinity, this led us to adapting
the similarity measure to take into account the pre-
cision and coverage metrics of a candidate synopsis
node. For all these reasons, we investigate a simple
similarity measure that has the advantage of explic-
itly coupling the precision and coverage criteria to
the early learning stages, hence requiring that the
learned profiles are simultaneously precise and com-
plete, with no compromises. A diagram showing the
different components of the stream mining frame-
work is shown in Fig. 1.

1.2. Organization of this paper

The rest of this paper is organized as follows. We
start by reviewing the TECNO-STREAMS algo-
rithm in Section 2. In Section 3, we describe how
we can use TECNO-STREAMS to track evolving
clusters in Web usage data. Then, we present our
validation methodology and metrics for the evolv-
ing stream mining framework. In Section 4 we apply
our validation strategy to the task of mining real
evolving Web clickstream data and for tracking
evolving topic trends in textual stream data, while
studying the effect of the choice of different similar-
ity measures. Finally, in Section 5, we summarize
our findings and present our conclusions.

Stream Data
Mining

| Validation

= e
= il

Fig. 1. Mining and validation of evolving data streams.
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2. Tecno-streams (tracking evolving clusters in noisy
streams)

In this section we present the main features of
TECNO-STREAMS that are relevant to this paper,
leaving most of the detail in [16]. The immune sys-
tem (lymphocyte elements) can behave as an alter-
native biological model of intelligent machines, in
contrast to the conventional model of the neural
system (neurons). In particular, the artificial
immune network (AIN) model is based on Jerne’s
Immune Network theory [11,27]. The system con-
sists of a network of artificial B cell lymphocytes,
Z'p, that summarize the learned model, hence play-
ing the role of synopsis nodes. In addition to the B
Cells, the immune network consists of stimulating
and suppressing links between these cells. Learning
takes as input a set of input data (external antigenic
agents), X,, and tries to learn an optimal immune
network consisting of linked B Cells based on clon-
ing operations. Each B Cell represents a learned pat-
tern that could be matched to a data point or
another B Cell in the network. A link between two
B Cells gets stronger if they are more similar. This
results in co-stimulation between similar cells.
Because an excess of co-stimulation between similar
B Cells can cause an explosive growth of the B Cell
population in a small local neighborhood (by clon-
ing), there is another phenomenon, known as co-
suppression, which acts to balance the influence of
close B Cells. In addition to controlling population
growth and enabling memory in the learned
immune network, co-stimulation and co-suppres-
sion define implicit pathways of communication
between the different elements (synopsis nodes) of
the immune network which act like an adaptive
and distributed set of agents that track the distribu-
tion of the input data stream. Without this collabo-
rative or cooperative component in the learning,
every synopsis node will act as an isolated element
with no visibility of the neighboring cells. It has
lately been recognized that a richer and higher level
of intelligence can emerge from collaborative behav-
ior between even the simplest agents. This phenom-
enon is frequently referred to as emergence, where
complex and organized global behavior can arise
from the interaction of simple local rules. Examples
can be found in ant colonies, bee swarms and bird
flocks [8,9,22]. In this specific context, this kind of
collaborative behavior is expected to enhance mem-
ory in a distributed manner, while affecting the
dynamics of learning. These crucial characteristics

may well be essential to learning and adaptation
in a single-pass setting, just as they are crucial to
the survival of natural organisms in dynamic envi-
ronments. Data from the input stream is matched
against a B Cell or synopsis node based on a prop-
erly chosen similarity measure. This affects the syn-
opsis node’s stimulation level, which in turn affects
both its outlook for survival, as well as the number
of clones that it produces. Because clones are similar
to their spawning parent, they together form a net-
work of co-stimulated cells that can sustain them-
selves even long after the disappearance of data
that has initiated the cloning. However, this net-
work of synopsis nodes will slowly wither and die
if it is no longer stimulated by the data for which
it has specialized, hence gradually forgetting old
encounters. This forgetting is the reason why the
immune system needs periodical reminders in the
form of re-vaccination. The combined recall and
forgetting behavior in the face of external antigenic
agents forms the fundamental principle behind the
concept of emerging or dynamic memory in the
immune system. This is specifically the reason why
the immune system metaphor offers a very compet-
itive model within the evolving data stream frame-
work. In the following description, we present a
more formal treatment of the intuitive concepts
explained above.

We will use TECNO-STREAMS to continuously
and dynamically learn evolving patterns from
dynamic Web data. To summarize our approach:
(1) The input data can be extracted from Web log
data (a Web log is a record of all files/URLSs
accessed by users on a Web site), or from a collec-
tion of text documents, (2) the data is pre-processed
(e.g., via cookies or IP address and time out window
for Web logs) to produce session lists: A session list
s, for user number ¢ is a list of indices of the URLs
that were visited by the same user, represented as a
binary vector (1 if the URL was visited during this
session, and 0 otherwise). Each session will repre-
sent a data record from the input stream. In the case
of text documents, a similar representation is
obtained by replacing the notion of a URL by a
keyword or term and a session by a document or
Web page content. Hence a data object would cor-
respond to one document represented as a list of
terms; (3) the ith B Cell plays the role of a synopsis
node that represents the ith candidate profile p,, and
encodes relevant URLs (or keywords for text data),
which are the attributes in this case, as well as the
additional measures of scale (¢7,) and age (1) at
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any point J (after J inputs have been processed) in
the stream sequence.

In a dynamic environment, the objects x, from a
data stream X are presented to the immune network
one at a time, with the stimulation and scale mea-
sures updated incrementally with each new data
object. It is more convenient to think of the data
index, ¢, as monotonically increasing with time.
That is, the Ny data points are presented in the fol-
lowing chronological order: xi,X,,...,Xy,. Each
synopsis node represents an influence zone over the
input data space. However, since data is dynamic
in nature, and has a temporal aspect, data that is
more current will have higher influence compared
to data that is less current. Quantitatively, the influ-
ence zone is defined in terms of a weight function
that decreases not only with distance from the data
location to the synopsis node prototype, but also
with the time since the data has been presented to
the immune network. It is convenient to think of
time as an additional dimension that is added to
the synopsis node compared to the classical static
B Cell, traditionally defined in the data space only
[17].

Robust weightlactivation function: For the ith
synopsis node, p,, i = 1,...,Np, we define the acti-
vation caused by the rth data point (received at
sequential order or time ¢), after a total of J inputs
have been received from the data stream as

a2
(&)
Wi = Wi (dlzl) =¢ i s (1)

where 7 is a forgetting time constant that controls the
time decay rate of the contribution from old data
points, and hence how much emphasis is placed
on the currency of the stream synopsis compared
to the sequence of data points encountered so far.
d>, is the distance from data x, (which is the rth data
encountered by the stream synopsis) to synopsis
node, p;,. 07, is a scale parameter that controls the
decay rate of the weights along the spatial dimen-
sions, and hence defines the size of an influence zone
around a cluster prototype. Data samples falling far
from this zone are considered outliers. The weight
functions decrease exponentially with the order of
presentation of a data point, ¢, and therefore, will
favor more current data in the learning process.

Influence zone: The ith synopsis node represents a
soft influence zone, 1Z,, that can be interpreted as a
robust zone of influence.

IZi = {Xt c X|Wit = Wmin}’ (2)

Each synopsis node is allowed to have is own
zone of influence with radial size proportional to
ai ;» that is dynamically estimated. Hence, outliers
are casily detected as data points falling outside
the influence zone of all synopsis nodes or through
their weak activations (w;; < wyi,, Vi).

Stimulationloptimization criterion: The stimula-
tion level, after J data points have been presented
to synopsis node p,, is defined as the density of
the data population around p,, (i.e., an estimate of
the spatial density at the synopsis node as measured
by the number of points in the influence zone,
divided by the radius of this influence zone):

J
5. = Et:zlwit. (3)

i =
OiJ

2.1. Cloning in the dynamic immune system

The synopsis nodes are cloned in proportion to
their stimulation levels relative to the average net-
work stimulation by creating N gjones; clones or dupli-
cates of the ith node, where Nones, = Kdonezfv)%.

k=1 Ok

When the synopsis node population size (Np (¢)) at
any time ¢ exceeds a pre-specified maximum (Np,, ),
the synopsis nodes are sorted in ascending order of
their stimulation levels, and the top (Np,(¢) — Np, )
synopsis nodes (with lowest stimulation) are killed
or archived in long term secondary storage in case
of low stimulation cells that are mature or old.

2.2. Learning new data and relation to emerging trend
detection

Somatic hyper-mutation is a powerful natural
exploration mechanism in the immune system, that
allows it to learn how to respond to new data that
has never been seen before. However, from a compu-
tational point of view, this is a very costly and ineffi-
cient operation since its complexity is exponential in
the number of features. Therefore, we model this
operation in the artificial immune system model by
an instant data duplication whenever a data point is
encountered that fails to activate the entire stream
synopsis. A new data, X, is said to activate the ith syn-
opsis node, if it falls within its influence zone, 1Z,,
essentially meaning that its activation of this synopsis
node, w;, exceeds a minimum threshold wy,;,,.

Potential outlier: A Potential outlier is a data
point that fails to activate the entire synopsis, i.c.,
Wit < Wmin, Vi=1,...,Np. The outlier is termed
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potential because, initially, it may either be an out-
lier or a new emerging pattern. It is only through
the continuous learning process that lies ahead, that
the fate of this outlier will be decided. If it is indeed
a true outlier, then it will form no mature nodes in
the stream synopsis.

2.3. Tecno-streams: tracking evolving clusters in
noisy data streams with a scalable immune system
learning model

The following algorithm is only an intuitive list of
steps for learning a dynamic synopsis from an evolv-
ing input data stream. More details can be found in
[16].

TECNO-STREAMS algorithm: (optional steps
are enclosed in [])

INPUT: data stream x,
OUTPUT: up to a maximum of Np__ syn-
opsis nodes p,, in the stream synopsis
Fix the maximal population size or number of
synopsis nodes, Np_;
Initialize  synopsis node population and
67 = Ginie using the first Np,, input data;
Compress stream synopsis into K subnet-
works, with centroid, Cy, k=1,...K, using
2 iterations of K Means,;
Repeat for each incoming data X, {
Present data to each subnetwork centroid,
Ci, k=1,...,K in network : Compute dis-
tance, activation weight, wy, and update
subnetwork’s scale Ji incrementally;
Determine the most activated subnetwork
(the one with maximum wy,);
IF All synopsis nodes in most activated
subnetwork have w;; <wp, (data does
not  sufficiently  activate  subnetwork)
THEN{
Create by duplication a new synopsis
node =p, =X, and o, = Ginic;
}
ELSE {
Repeat for each synopsis node p,, in
most activated subnetwork {
IF w; > wpi, (ie., data activates
synopsis node p;) THEN

Refresh age (t, = 0) for synopsis
node py;

ELSE
Increment age (t;,) for synopsis
node py;;

Compute distance from data X; to

synopsis node py ;

Compute synopsis node pg,’s stimula-

tion level;

Update synopsis node py’s scale o

}
}

Clone and mutate synopsis nodes;
IF synopsis size Np,(t) > Np,_, Then {
IF (Age of i"synopsis node ts; < tmin)
THEN
Temporarily scale synopsis node’s
stimulation level to the network aver-
age stimulation;
Sort synopsis nodes in ascending order
of their stimulation level;
Kill worst excess (top (Np,(t) — Np,,.)
according to previous sorting) synopsis
nodes;
[or move oldestimature synopsis nodes
to secondary (long term) storage];

}

Compress stream synopsis periodically
(after every T data points), into K subnet-
works using 2 iterations of K Means with
the previous centroids as initial centroids,

2.4. Example of learning an evolving synopsis from a
noisy data stream

To illustrate how the synopsis if formed dynam-
ically as the input data stream arrives, we show the
results on a noisy 2-D data set with three clusters (or
trends) and 1400 data points because the results can
be inspected visually and easily. The implementa-
tion parameters were Np =30, ©=100,
Wmin = 0.2, and compression with rate K = 10 after
every T = 40 inputs have been processed. The evolu-
tion of the synopsis, limited to a maximum size of 30
nodes, for three noisy clusters, when the input data
is presented in the order of the clusters or trends is
shown in Fig. 2, where the synopsis nodes are super-
imposed on the original data set seen so far, at
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Fig. 2. Single pass results on a noisy data stream presented one input at a time in the same order as the trends/clusters: location of synopsis
nodes and estimated scales for a noisy stream with three clusters after processing (a) 250 samples, (b) 500 samples, and (c) all 1134 samples.

different snapshots corresponding to distinct mile-
stones within the data stream. The three milestones
approximate the instant following the presentation
of the inputs from the first cluster, then the second
cluster, and finally the third cluster. Each pair of
crossing vertical and horizontal lines is centered
on a node location, and their length represents the
diameter of this node’s influence zone, 1Z,
(=~ 30,,). This trend sequencing scenario is the most
difficult (worst) case for single-pass learning, as it
truly tests the ability of the system to memorize
the old patterns, adapt to new patterns, and still
work within the constraints of a small synopsis.
We emphasize that the final results after all inputs
have been processed is equivalent to a single pass,
resulting in a small synopsis size of only 30 nodes,
that evolves together with the original input data
stream to form a dynamic summary of its distribu-
tion. Note how the noise is ignored after a sufficient
number of inputs, except for the last snapshot that
shows the synopsis capturing a few noise points that
have just been received as input. Hence they are
expected to be removed like all the previous noise
points if the stream were continued.

3. Mining evolving user profiles from noisy Web
clickstream data

3.1. Similarity measures used in the learning phase of
single-pass mining of clusters in Web data

For many data mining applications such as clus-
tering text documents and other high dimensional
data sets, the Euclidean distance measure is not
appropriate. This is due mainly to the high dimen-
sionality of the problem, and the fact that two docu-
ments may not be considered similar if keywords are
missing in both documents. More appropriate for

this application, is a distance based on the cosine sim-
ilarity measure between data item x, and a learned
synopsis node profile py, which in the simplest
case, can both be defined as binary vectors of length
Ny, the total number of items (URLs or keywords),
(12],

Ny
Zk:lxhk X Dsij
Ny Ny '
\/Zk:lxl«,ka:]psi,k

It is easy to show that the cosine similarity is
related to the well known information retrieval
measures of precision and coverage as follows:

Secos(iyt) = 1/Precﬁ,Covgf,, (5)

where the precision in the learning phase, Prec’, de-
scribes the accuracy of the learned synopsis node pro-
files p, in representing the data x,, or the ratio of the
number of matching items (URLs or terms) between
the learned profile and the data (session or document)
to the number of items in the learned profile:

Scos(ia t) =

“4)

Ny
I Zk:]xt,k X psik
Prec;, = ———=
it Ny ’
Zk:lps,;k

while the coverage (also known as recall) in the
learning phase, Covgfj describes the completeness
of the learned synopsis node profiles p,, in represent-
ing the stream data point x,, or the ratio of the num-
ber of matching items (URLs or terms) between the
learned profile and the data (session or document)
to the number of items in the data:

(6)

Zgilxt,k X Py,
TS*. (7)

Covg;, =
k=1Y1k

In light of (5), we can see that using the cosine
similarity as a basis for the distance used to compute
the density around each synopsis node, given by the
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stimulation equation in (3) results in optimizing
both precision and coverage equally by combining
them through the geometrical average. However,
we noticed that when learning in a single-pass
framework, this tends to favor longer profiles that
tend to match more data, while compromising pre-
cision. Without loss of generality, if we confine our-
selves to the simplest type of recommendation
strategy or information retrieval scheme, we can
see that compromising precision can have a perni-
cious effect on the learned profiles, especially when
these are viewed as the cluster or profile summaries
that will be used later in a recommendation system
based on recommending the nearest profile, or in
an information retrieval system based on matching
a user query to the nearest cluster representative
centroid. In order to circumvent this problem, one
can simply disregard the coverage component from
the cosine similarity, hence using only precision as a
similarity measure. However, we noticed that this
would tend to suffer from the other extreme, result-
ing in very short profiles that completely ignore cov-
erage. For this reason, we propose to use different
combination strategies of precision and coverage,
not necessarily limited to the geometrical average.
It can be shown that the most conservative aggrega-
tion that places harsh demands on both precision
and coverage simultaneously must be given by the
following pessimistic aggregation,

Sun(i.) = min {Prect, Covg?, ). )

Therefore, we will compare learning the profiles
using cosine similarity S.os to learning using the
most pessimistic aggregation of precision and cover-
age, called Min-Of-Precision-Coverage or MinPC,
Smin- Note that the distance used to compute the
nodes’ stimulation/density values in (3) is given by

dlzt =1- Scos(ia t)v (9)
in case the cosine similarity is used, or as
do =1 — Spin(i,t) (10)

in case MinPC is used.

3.2. Validation metrics for single-pass mining of
evolving Web data streams

We propose several validation metrics that are
rooted in information retrieval, and that are useful
to assess the quality of the stream synopsis as a sum-
mary of an input data stream from the points of
view of precision, coverage (or recall), and adaptabil-

ity to the evolution of the stream. In evaluating the
goodness of the learned synopsis node profiles that
make up the stream synopsis model, we recall that
the ideal synopsis node profiles should represent
the input data stream with respect to its subcatego-
ries or ground-truth trends as accurately as possible,
and as completely as possible, and that the distribu-
tion of the learned repertoire of synopsis node pro-
files should mirror the incoming stream of evolving
data as represented by the ground truth profiles/
topic representatives. Accuracy can be measured
based on the precision of the learned synopsis node
profiles, p,, relative to the ground truth profile for
category ¢, pe, while completeness can be measured
based on the coverage of the learned synopsis node
profiles, p,, relative to the ground truth profile for
category ¢, p.. Here, precision in the validation
phase, describes the accuracy of the synopsis node
profiles in representing the ground truth profiles in
terms of the number of matching items (URLs or
terms) between the learned synopsis profile and
the ground truth profiles. Let k denote the item
index, and N; denote the total number of items in
the data stream (such as URLs in clickstreams or
terms in text documents). Let 7 denote the time
index or the order of the most recent/current input
x, from the data stream. ¢ is assumed to increase
by 1 with each new input from the data stream.
Here x, ;. = 1 if x, contains the kth item, and 0 other-
wise. Let ¢ denote the category index for the cth
ground truth profile p.. Here p., =1 if p. contains
the kth item, and 0 otherwise. Let i denote the index
for the ith synopsis node and Np () denote the total
number of synopsis nodes at time . Let p,,(¢) denote
the ith synopsis node at time ¢. p, (¢) =1 if pg ()
contains the kth item, and 0 otherwise. Note that
the previous binary vector notations facilitate our
presentation of the validation metric equations
below. However, for implementation purposes, the
synopsis node profiles, the input sessions or docu-
ments, and the ground truth profiles are represented
as lists of items to avoid the lengthy and yet very
sparse vector representation, and thus save signifi-
cant amounts of memory and computations. Let
Ps(7) be the set of all Np () synopsis nodes at time
t. Then the precision of the ith synopsis node
p (¢), relative to the ground truth profile for the
cth category p., is defined as

ch\llpx,- (t) X 29"
Prec(py, (1), p.) = N
Zk:lpx,;k (Z)

(11)
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while the coverage of the ith synopsis node p, (1),
relative to the the cth ground truth profile p., is
defined as

Mop. (£) x
Core(p, (1) p) = =L 0P, (12

D kl1Pek

The above measures evaluate the quality of an indi-
vidual synopsis node p, () at time ¢, and need to be
aggregated over the entire synopsis Pg(#) to assess
its quality as follows in terms of precision and in
terms of coverage, respectively.

S¥(t,¢) = Prec™ (Py(t), p,)

N
1 if n’licalig{Prec(psf(t)7pc)} > op,

0 otherwise.

(13)
S (t,c) = Covg™ (Py(t), pe)
Ui max{Coug(p, (1), p.)} > e,
0 otherwise.
(14)

S (t,c) is a matrix set or more formally a binary
relation matrix that describes the distribution of
the precise synopsis nodes per input category c at time
t, relative to a minimum quality level op, while
S (t,¢) is a matrix set or more formally a binary
relation matrix that describes the distribution of
the complete synopsis nodes per input category c¢ at
time t, relative to a minimum quality level a¢. The
two measures can be combined to get an overall
quality measure that summarizes the distribution
of the learned synopsis nodes that simultaneously
achieve a precision level exceeding ap and a cover-
age level exceeding o, at any time ¢z, as follows

Socc,o(p(t7 C) — S;‘)P(t7 c) X Séc(t7 C). (15)

In order to have an objective evaluation of the
synopsis, we must compare the above two matrices
with the ones that would result if the actual input
data stream object x, was used instead of the synop-
sis at any point 7 in the data stream sequence, as fol-
lows. First we compute analogous quality metrics to
the ones defined in (13) and (14), but that take the
original data stream as input, while accounting for
the past At inputs from the stream:

DY (t,c,At) = Prec” (X, P, At)
{ 1 if 3¢ € [t — At 1] |Prec(X,y, p.) > op,

0 otherwise.

(16)

D (t, ¢, At) = Covg™ (X, p,, At)
_ { 1 if 3¢ € [t — At,1]|Covg(x,,p,) > oc,

0 otherwise.
(17)

At is called the retrospective time span, and it cap-
tures the state of the data stream not only at a single
instant 7, but rather the cumulative retrospective dis-
tribution throughout a window spanning the past At
inputs from the stream. Ideally, Az should be related
to the memorization time span 7. For example,
At =0 would capture an instantaneous snapshot
of the input stream with no retrospection into the
recent past, while A7z = Kt retrospectively summa-
rizes the recent past Kt inputs from the data stream.
The two previous measures in (16) and (17) can be
combined to get an overall reference measure that
summarizes the retrospective distribution of the
input data stream at any time ¢, as follows

D*e(t ¢, At) = D (t,c, At) x D (t,c,Af).  (18)

Finally, we can define two global measures that
respectively assess the overall level of precision
and the overall level of coverage of the entire synop-
sis throughout the entire stream lifetime or number
of individual data points Ny, and all N¢ categories.
The retrospective macro precision of the learned syn-
opsis relative to the past At inputs from the stream
is defined as

Y87 (8, ¢) X D (t, ¢, At)
S (1, c) ’

t=1 c=

Nx
P(Al) = 2o

(19)

while the retrospective macro coverage of the learned
synopsis relative to the past Az inputs from the
stream is defined as

Mo STVE ST (¢, ¢) x Dt ¢, At)

PGP e, A)

C(At) =

)

(20)

2(At) measures the proportion of the learned syn-
opsis nodes that are accurate representations of
the past A¢ inputs from the stream relative to all
the synopsis nodes, while ¢ (A¢) measures the pro-
portion of the past Az inputs from the stream that
have been accurately summarized by the learned
Synopsis.

In addition, we can focus only on the item-wise
quality of each synopsis node compared to the
ground truth profiles, and define two global



1498 O. Nasraoui et al. | Computer Networks 50 (2006) 1488-1512

measures that respectively assess the overall level of
precision and the overall level of coverage of the
entire synopsis at the item level throughout the
entire stream lifetime or number of individual data
points Ny, and all N categories, as follows:

Ny Nc oo oLp 0L
SH(t D% (¢, ¢, At
gu(At) = Zl:l (}’v:)(l P1§C7clpic ( €5 ) , (21)
21225 Dty ¢, At

t=1

(A1) = T SE(1,€) X D (1, ¢, A
' Dt ¢, At

, (22)

2,(At) is called retrospective micro precision, and it
measures the proportion of the recent input data
stream that has been precisely summarized by the
learned synopsis at the item level; while % ,(At) is
called retrospective micro coverage, and it measures
the proportion of the recent input data stream that
has been completely summarized by the learned syn-
opsis at the item level. The measures are referred to
as micro metrics because they assess the individual
precision and coverage separately for the synopsis
nodes at the item level, while the macro metrics as-
sess the quality of the entire synopsis in summariz-
ing the input data stream.

All the metrics above are retrospective in the
sense that they take into account the recent past
when comparing data stream and synopsis. We do
this because while the learned synopsis is expected
to adapt to the current input, it is also expected to
keep some memory of the recent past. In a sense,
this is also done to capture the conflicting aspects
of stability and volatility of the synopsis, with more
emphasis towards the latter as Az is decreased.

3.3. Validation methodology for single-pass mining
of evolving Web data streams

In order to take advantage of the above metrics,
we propose a validation methodology that is most
useful within the framework of mining evolving
Web data streams. If this were a simpler non-
dynamic framework, then all that would need to
be measured would be the precision and coverage/
recall of the learned synopsis as a faithful represen-
tation of the input data stream. However, in this
case, we have to test an additional feature of learn-
ing which is the adaptability in the face of evolution.
Evolution can be simulated easily if an input data
set is pre-partitioned into several subsets, one in
each known category. The categories can corre-
spond to class labels available with the data, or they

can be categories that are computed and validated
using an external technique. In the case of labeled
data, such as the 20-newsgroup text data set, the
categories or trends are the 20 classes (or news-
groups). In the case of Web clickstreams or user ses-
sions, the categories have been pre-discovered and
validated using a third method that mines user pro-
files from Web user session data. Once the data has
been divided into several categories, which are here-
toforth called trends, different trend sequencing sce-
narios can be formed simply by presenting the
data as a stream in the order of the trends. This is
captured quantitatively by the retrospective tempo-
ral-trend distribution D**(¢,¢, At) of the input
data stream at time/sequence order point ¢ with
respect to the different categories or trends (c).
Hence every trend sequencing scenario, which corre-
sponds to a different permutation of the order of
presentation of the trends/categories, will be entirely
captured in one metric: D***¢ (¢, c, At).

The main idea in the validation procedure is to
compare the distribution of the learned synopsis
against that of the original input data stream, under
a given trend sequencing scenario. This amounts to
contrasting the temporal-trend distributions of the
learned synopsis from a precision point of view
(S¥(t,c)) and from a coverage point of view
(S (¢, ¢)) against the retrospective temporal-trend
distribution D**¢(¢, ¢, At) of the input data stream
under that sequencing scenario. For data sets of
modest size and modest number of categories or
trends (20 newsgroup data), a visualization of the
synopsis distribution matrices S¥ (¢,¢) and SF (¢,¢)
in comparison to the original data distribution
D*m%¢(¢, ¢, At) is sufficient. However, in cases, where
a visual comparison is not easy, such as for the lar-
ger Webclickstream data, that contains 92 trends,
this comparison is further captured by the aggregate
retrospective micro precision and coverage metrics
2,(At) and €,(At), given in (21) and (22),
respectively.

4. Single-pass mining of evolving topics in text data

Clustering is an important task that is performed
as part of many text mining and information retrie-
val systems. Clustering can be used for efficiently
finding the nearest neighbors of a document [4],
for improving the precision or recall in information
retrieval systems [13,28], for aid in browsing a col-
lection of documents [7], for organizing search
engine results [31], and lately for the personalization
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of search engine results [15]. Most current document
clustering approaches work with what is known as
the vector-space model, where each document is
represented by a vector in the term-space. The latter
generally consists of the keywords important to the
document collection. For instance, the respective
term frequencies (TF) [12] in a given document
can be used to form a vector model for this docu-
ment. In order to discount frequent words with little
discriminating power, each term/word can be
weighted based on its inverse document frequency
(IDF) [12,15] in the document collection. The detec-
tion of cluster representatives in text data proceeds
in a similar way to the Web usage data. The pres-
ence of a URL in Web sessions is analogous to
the presence of a keyword in a text document, and
a Web user profile is analogous to a topic profile
which corresponds to a set of keywords present in
a synopsis node profile. In other words, we do not
change the learning model, and even use the sim-
plest document vector representation, i.e., binary,
to really be able to assess the ability of TECNO-
STREAMS to track different topics without any
extra help from pre-processing. Of course a general-
ization to alternate document vector formats is triv-
ial, and would not require any modification to the
proposed approach. Here again, we have the choice
of using the cosine similarity or the MinPC similar-
ity in the learning process, as for the case of tracking
evolving Web usage trends.

4.1. Simulation results on the 20 newsgroups data

The 20 mini newsgroups data set [14] is a collec-
tion of 2000 messages, collected from 20 different
netnews newsgroups. One hundred messages from
each of the 20 newsgroups were chosen at random
and partitioned by newsgroup name. The list of
newsgroups from which the messages were chosen
is shown in Table 1. The documents were first pre-
processed: This included stripping each news mes-
sage from the e-mail header and special tags, then
eliminating stop words and finally stemming words
to their root form using the rainbow software pack-
age [14]. After pre-processing, 395 words were
selected based both on both inverse document fre-
quency (IDF) and picking the top words based on
information gain with the class attribute. Conse-
quently, there were 1969 documents with at least
one of these selected keywords. We opt to use the
simplest document vector representation, i.e., bin-
ary. In order to evaluate the ability of TECNO-

Table 1

Names of the 20 newsgroups

Class Class descriptions
0 alt.atheism

1 comp.graphics
2 comp.os.ms-windows.misc
3 comp.sys.ibm.pc.hardware
4 comp.sys.mac.hardware
5 comp.windows.x
6 misc.forsale
7 rec.autos
8 rec.motorcycles
9 rec.sport.baseball
10 rec.sport.hockey
11 sci.crypt
12 sci.electronics
13 sci.med
14 sci.space
15 soc.religion.christian
16 talk.politics.guns
17 talk.politics.mideast
18 talk.politics.misc
19 talk.religion.misc

STREAMS to learn synopsis node profiles that
can track and evolve with evolving data, we present
the document collection one newsgroup or cate-
gory/trend at a time (from topics 0 to 19). The
ground-truth profiles consist of the set of keywords
that occur in at least 20 documents for each news-
group category separately. We perform learning
using the cosine similarity Sco, in learning as given
by (4), and then again using the MinPC similarity
Smin;» as given by (8). The control parameter for
compression was K =10, and periodical compres-
sion every T = 10 sessions. The activation threshold
was Wy = 0.375, the maximum synopsis size Np_
was 50, and forgetting time constant t was 100. We
track the number of synopsis nodes that succeed in
learning each one of the 20 ground truth topic pro-
files after each document is presented, by plotting
the matrices that describe the distribution of precise
synopsis nodes S% (¢, ¢) and the distribution of com-
plete synopsis nodes S¢ (¢, ¢), given in (13) and (14),
respectively.

Because this data set is notorious for its large
amounts of noise, overlap, and even mislabelings
in the documents, tracking the evolving topics one
at a time is expected to be challenging. Fig. 3 shows
that with the MinPC similarity, most of the topics
can be detected with decent coverage and precision,
as they are gradually presented in a single pass,
hence resulting in a staircase pattern except
for some synchronizations between several related
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Fig. 3. Hits per usage trend (c) versus document number (z) when documents are presented in order of trend 0 to trend 19 and MinPC
similarity is used: (a) Precision 52;3(17 ¢), (b) coverage S%S(t, ¢), showing more hits compared to the results with the cosine similarity in

Fig. 4.

topics. For instance, topics 0 (alt.atheism) and 15
(soc.religion.christian) are found to be related
because of the overlap in their documents, particu-
larly, e-mail messages containing religious argu-
ments and debates. Similarly, topics 1-5 (all the
comp.newsgroups) are found to be related as
expected. The differences between Fig. 3(a) and (b)
indicate that most of the overlapping topics are syn-
chronized with respect to coverage, but not with
respect to precision. This is a very desirable prop-
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erty that further asserts the importance of both pre-
cision and coverage in evaluating the learned profile
summaries and how they interact. While overlap-
ping subjects may register high coverage with
respect to each other, precision should be more
restrictive, to keep a better distinction between the
specific categories.

On the other hand the cosine similarity manages
well in detecting high precision profiles as shown in
Fig. 4(a). However, with respect to coverage, it can-
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Fig. 4. Hits per usage trend (c) versus document number (f) when documents are presented in order of trend 0 to trend 19 and cosine

similarity is used: (a) Precision $%°(¢,¢), (b) coverage S&°(¢, ).
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not succeed to help learn most of the newsgroup
topics, as shown in Fig. 4(b). This confirms that
the performance of the MinPC similarity is gener-
ally better than the cosine similarity, and that this
outperformance can be expected to get even higher
for data sets that are more challenging in terms of
the amount of noise or overlap, or in terms of the
sequencing of the topics with respect to each other.
It is important to note that our results correspond
to a very challenging scenario, where each datum
(a user session or a text document) is processed only
once.

4.2. Simulation results with single-pass mining of
user profiles from real Web clickstream data

Profiles were mined from a clickstream data set
consisting of 1,484,449 distinct hits to the main
Website of the University of Missouri-Columbia.

After pre-processing as explained in [18], 23,938 ses-
sions (a session consists of consecutive and close
requests from the same IP address) were extracted
accessing a total of 17,595 URLs. The control
parameter for compression was K = 5, and periodi-
cal compression every 7 = 10 sessions. The activa-
tion threshold was wy,;, = 0.375. It is interesting to
note that the memorization span of the network is
affected by the parameter t which affects the rate
of forgetting in the stream synopsis. A low value will
favor faster forgetting, and therefore a more current
set of profiles that reflect the most recent activity on
a Website, while a higher value will tend to keep
older profiles in the network for longer periods.
Another important parameter is the maximum syn-
opsis size of the network (maximum number of
nodes) Np,, which can be considered as the number
of resources available to make up the stream synop-
sis. A low value will require a stream synopsis of

Table 2
A sample of the 93 profiles discovered by H-UNC from the MU main Website data
¢ |P,| Description
8 111 Accesses to /~engmo/amlit.html: English professor’s American literature page
11 64 Accesses to /~elliswww pages: Ellis library electronic catalog
16 103 Accesses to /mu/academic.html and /~regwww pages: academic course registration
24 59 Accesses to / and /~regwww/admission pages: main page, admissions, application
35 36 Accesses to / and /~komu pages: local public broadcasting TV station
39 83 Accesses to /~c639692/blend.html (student offering color blending program)
40 51 Accesses to / and /~c639692/exp pages: student pages about the Euler number
51 166 Accesses to /~c717733/funnies (student offering jokes” page)
53 158 Accesses to /~c617756 pages (student dedicating page to actor Antonio Banderas)
60 257 Accesses to /~c641644 pages: student dedicating page to music group Nirvana
66 161 Accesses to / and /~jschool pages: Journalism school
75 260 Accesses to /~c690403/dmb pages (student dedicating page to music band)
I
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Fig. 5. Dendrogram of the ground-truth profiles based on inter-class distances.
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more modest size that can fit in smaller memory size
(hence more useful for stream-mining applications),
while a higher value will tend to require more mem-
ory, and is therefore more costly. Hence the maxi-
mum synopsis size Np,, and forgetting time
constant t were set to different combinations to test
the effect of the amount of resources available to the
synopsis in terms of space constraints (Np,, = 150,
300) and memorization span (t = 50,250).

We illustrate the continuous learning ability of the
proposed technique using the following simulations:

Scenario 1: Ascending orderldrastic changes: We
partition the Web sessions into 93 distinct sets of
sessions, each one assigned to the closest of 93 pro-
files previously discovered and validated using Hier-

archical Unsupervised Niche Clustering (HUNC)
[18], and listed in Table 2. Then we presented these
sessions to TECNO-STREAMS one profile at a
time: sessions assigned to trend 0, then sessions
assigned to profile 1,..., etc. This scenario empha-
sizes drastic changes in user access patterns, where
the user activity changes from one category to a dif-
ferent one at certain points in time.

Scenario 2: Regular or natural order/mild changes:
The Web sessions are presented in their natural
chronological order exactly as received in real time
by the Web server. This scenario generally results
in more continuous and less drastic changes com-
pared to scenario 1, and is therefore termed mild
changes.

Profiles

Session index x10°

(@

Profiles

Session index x10

(b)

Fig. 6. Hits per usage trend (c) versus session number (z) when sessions are presented in natural order: mild changes (scenario 2) and
MinPC similarity is used: (a) Precision $%°(¢,¢), (b) coverage S&* (¢, c).
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For each of the above scenarios, we repeated the
experiment using cosine similarity Scos, in learning
as given by (4), and then again using the MinPC
similarity Spi,, as given by (8).

Fig. 5 shows a dendrogram of the classes based
on the inter-class distance values, where the distance
is given by (1 minus cosine similarity). Thus, classes
28 and 29 (which have the same URLs with different
weights) appear the closest. Here we can see three
big groups: one including Class 0, another including
Class 1, and another including Classes 8 and 9.
From here we could expect some interactions in
learning the classes within each group.

The immune clustering algorithm could learn the
user profiles in a single pass with a maximum synop-
sis size of 150 nodes and t = 50. A single pass over
all 23,938 Web user sessions (with non-optimized
Java code) took 6 min on a 2 GHz Pentium 4 PC
running on Linux. With an average of 0.02 s per
user session, our profile mining system is suitable
for use in a real time personalization system to con-
stantly and continuously provide a fresh and current
list of an unknown number of evolving user profiles.
Old profiles can be handled in a variety of ways.
They may either be discarded, moved to secondary
storage, or cached for possible re-emergence. Even
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Fig. 7. Hits per usage trend (c) versus session number (7) when sessions are presented in ascending order: drastic changes (scenario 1) and
MinPC similarity is used: (a) Precision $%°(¢,¢), (b) coverage S&* (¢, c).
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if discarded, older profiles that re-emerge later,
would be re-learned from scratch just like new pro-
files. Hence the logistics of maintaining old profiles
are less crucial compared to existing techniques.
We plot the matrices that describe the distribu-
tion of precise synopsis nodes S3° (¢, ¢) and the distri-
bution of complete synopsis nodes S¢° (¢, ¢), given in
(13) and (14), respectively. This provides an evolv-
ing number of hits per profile relative to each of
the above criteria, as shown in Figs. 6 and 7, for
the two different trend sequencing scenarios respec-
tively. The y-axis is split into 93 intervals, with each
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interval devoted to the trend/profile number (c)
indicated by the lower value (from 0 to 92). A
non-zero value in the matrix S¥(¢,¢) or SF (¢, ¢)
can be interpreted as a hit for the cth category/trend
for session No. ¢, and is shown using a dot symbol
in these figures at location (z,¢). The presence of a
dot symbol indicates that at least one synopsis node
profile has achieved the desired threshold in preci-
sion or coverage.

Fig. 7(a) and (b) show the distribution of com-
plete synopsis nodes S (z,¢), and the distribution
of precise synopsis nodes S¥ (¢, ¢), respectively, for

90 -

Profiles

3

0 T g — - ==

o 0.5 1

Session index

1.5
x 10*

Fig. 8. Temporal-trend distribution D***“ (¢, ¢,0) shown as hits in usage trend (c) versus session number (#) of the input data stream when
sessions are presented in ascending order: drastic changes (scenario 1).

Profiles

Session index

Fig. 9. Temporal-trend distribution D*7*(z,¢) shown as hits in usage trend (c) versus session number (7) of the input data stream when

sessions are presented in natural order: mild changes (scenario 2).



O. Nasraoui et al. | Computer Networks 50 (2006) 1488—1512

the MinPC similarity, when scenario 1 is deployed
for sequencing the usage trends. They both exhibit
an expected staircase pattern, similar to the original
data distribution D***¢(¢, ¢, 0), in Fig. 8, hence prov-
ing the gradual learning of emergent usage trends as
these are experienced by the stream synopsis in the
order from trend 0 to 92. The plot shows some pecu-
liarities, for example trend 28 records hits at the
same time as trend 29. Fig. 5 shows that these trends
do indeed share a high similarity. Typical cross reac-
tions between similar patterns are actually desired
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and illustrate a certain tolerance for inexact
matching.

Finally Fig. 6(a) and (b) show the distribution of
complete synopsis nodes S¢° (¢, ¢), and the distribu-
tion of precise synopsis nodes S’ (z, c), respectively,
for the MinPC similarity, when the sessions are pre-
sented in their regular or natural chronological
order corresponding to scenario 2. In this case, the
order of presentation of the trends is no longer
sequenced in the order of the trend number. Instead,
the user sessions are presented in completely natural
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Fig. 10. Average Retro Macro metrics versus t for natural order at Np,, = 150: (a) Coverage %(t), and (b) precision 2(1).
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Fig. 11. Average Retro Macro metrics versus Np . for natural order at v = 50: (a) Coverage (), and (b) precision 2(z).
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(chronological) order, exactly as received by the
Web server in real time. So we cannot expect a stair-
case pattern. In order to visualize the expected pat-
tern, we simply plot the distribution of the original
input sessions, as captured by D**(¢,¢,0), in
Fig. 9. This figure shows that the session data is
quite noisy, and that the arrival sequence and pat-
tern of sessions belonging to the same usage trend
may vary in a way that makes incremental tracking
and discovery of the profiles even more challenging
than in a batch style approach, where the sessions
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can be stored in memory, and a standard iterative
approach is used to mine the profiles. It also shows
how some of the usage trends are not synchronized
with others, and how some of the trends (e.g.: No.
40-45) are weak and noisy. Such weak profiles can
be even more elusive to discover in a real time
Web mining system. While Fig. 6(a) and (b) show
the high coverage and high precision synopsis node
distribution with time, Fig. 9 shows the distribution
of the input data with time. The fact that all these
figures show a striking similarity in the emergence
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Fig. 12. Average Retro Macro metrics versus t for ascending order at Np,, = 150: (a) Coverage %(t), and (b) precision 2(t).
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Fig. 13. Average Retro Macro metrics versus Np,, for ascending order at t = 50: (a) Coverage %(t), and (b) precision 2(t).
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patterns of the trends, attests to the fact that the
stream synopsis is able to form a reasonable
dynamic synopsis of the usage data, even after a sin-
gle pass over the data.

To further assess the results for this data set, the
retrospective macro metrics 2 and % at At = 7 were
averaged over all quality levels (0.1-0.9 in 0.2 incre-
ments) of ap amd o respectively, and then plotted
versus the forgetting time constant 7 in Fig. 10,
and versus the maximum synopsis size Np  in
Fig. 11 for the regular or natural order (mild
changes). They are also plotted versus the forgetting
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time constant 7 in Fig. 12, and versus the maximum
synopsis size Np . in Fig. 13 for the ascending order
(drastic changes). From these figures, we see that in
the regular or natural order (mild changes), the
MinPC similarity achieves better macro coverage
and precision levels, particularly for smaller synop-
sis size (Np,, = 150) compared to the cosine simi-
larity, which only achieves higher coverage for
twice the synopsis size (300). This means that under
harsh constraints that limit the resources in terms of
space requirements to learn a good synopsis, the
MinPC has a slight advantage. This is a desired
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Fig. 14. Average Retro Micro metrics versus t for natural order at Np, = 150: (a) Coverage %,(t), and (b) precision 2,(t).
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property in most massive data streaming applica-
tions, where memory space tends to be severely lim-
ited compared to the data throughput. It is also
possible to see that in the case of ascending order
(drastic changes), the MinPC similarity achieves bet-
ter macro coverage compared to the cosine similar-
ity. However, macro precision is better only with
smaller synopsis size and with a shorter memoriza-
tion span, because, as these parameters increase,
the amount of memory (of older profiles) kept in
the synopsis is also increased. This in turn can
adversely affect the macro precision metric because
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in addition to the current synopsis nodes adapted
to the current environment, there is also a bulk of
redundant and older synopsis nodes that are kept
in the synopsis for sometime. It appears that, when
given twice the resources in terms of space (synopsis
size) and a five times longer memorization span,
cosine overcomes its limitations and achieves the
same level of quality as MinPC, but only from a
precision point of view. Coverage remains lower.
The Retro Micro metrics 2, and %, at At =1
were also averaged over all quality levels ap amd
o respectively, and then plotted versus the forget-
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Fig. 16. Average Retro Micro metrics versus © for ascending order at Np = 150: (a) Coverage %,(), and (b) precision 2,(t).
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ting time constant 7 in Fig. 14, and versus the max-
imum synopsis size Np,, in Fig. 15 for the regular or
natural order (mild changes). They are also plotted
versus the forgetting time constant t in Fig. 16,
and versus the maximum synopsis size Np  in
Fig. 17 for the ascending order (drastic changes).
From these figures, we see that in the regular or nat-
ural order (mild changes), both the MinPC and
cosine similarity measures achieve similar micro
coverage and precision. However, for MinPC, the
micro metrics are generally higher with smaller syn-
opsis size (Np,, = 150). This means that under
harsh constraints that limit the resources in terms
of space requirements to learn a good synopsis,
the MinPC has a slight advantage. It is also possible
to see that in the case of ascending order (drastic
changes), the MinPC similarity achieves better
micro coverage and micro precision compared to
the cosine similarity. This means that under harsh
constraints and drastic changes, the MinPC has
the advantage.

We can conclude that the gap between the
MinPC and cosine similarities, in the number and
fidelity of learned high-precision and high-coverage
profiles compared to the incoming stream of evolv-
ing trends, gets wider when the trends are presented
one at a time (scenario l: drastic changes) as
opposed to when they are presented in a more ran-
dom, alternating order (scenario 2: mild changes).
Note that scenario 1 is much more challenging than
scenario 2, and it was simulated intentionally to test
the ability to learn completely new and unseen pat-
terns (usage trends, topics, etc.), even after settling
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on a stable set of learned patterns before. In other
words, this scenario represents an extreme test of
the adaptability of the single-pass Web mining
system.

Figs. 18 and 19 show the effect of the past retro-
spective span At¢ on the retro metrics versus (At/t),
showing that with increasing retrospection into the
past, coverage decreases, since we are comparing
the synopsis against an entire span of the input data
stream, while the precision increases, showing that
the synopsis consists of not only instantly adapted
nodes, but also nodes that form a memory of the
recent past. However, the gap between MinPC
and Cosine gets wider with increasing retrospection
into the past, even though they both start at the
same level with no retrospection (Af=0). This
shows that the quality of the synopsis with MinPC
is slightly better from a persistence/memory point
of view, while keeping the same adaptation level.
In other words, Cosine results in a more volatile
synopsis.

We finally comment on the relatively low macro
precision values without retrospection into the
recent past, i.e., with Ar =0, by noting that the
search for good synopsis nodes in TECNO-
STREAMS is based on an evolutionary type of
optimization strategy inspired by the immune sys-
tem. This strategy is based on cloning and a popula-
tion of candidate synopsis nodes. Hence,
redundancy of the nodes is a natural by-product
which actually enhances the search process with a
pool of candidates that further cooperate, instead
of an individual candidate. In addition to the
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redundancy, even as the synopsis tries to keep up
with new and emerging trends, it still maintains
some of the older profiles simply by virtue of being
a form of evolving memory of the input data. Yet,
when we evaluate the synopsis from a macro preci-
sion point of view, we compare all the synopsis
nodes against the input data distribution at the cur-
rent time 7 only. For this reason, the macro preci-
sion can vary depending on the number of current
or active trends at time z. The fact that there is a
tradeoff between the memorization of older profiles
and the adaptation to new profiles is confirmed by
the observation that the macro precision seems to
be adversely affected by a larger synopsis (higher
N Pmax)'

5. Conclusions

We investigated a recently proposed robust and
scalable algorithm (TECNO-STREAMS) and the
impact of similarity measures on mining an
unknown number of evolving profiles or trends in
a noisy Web data stream. The main factor behind
the ability of the proposed method to learn in a sin-
gle pass lies in the richness of the immune network
structure that forms a dynamic synopsis of the data.
TECNO-STREAMS adheres to all the require-
ments of clustering data streams [2]: compactness
of representation, fast incremental processing of new
data points, and clear and fast identification of outli-
ers. This is mainly due to the compression mecha-
nism and the dynamic synopsis node model that
make the immune network manageable, and contin-

uous learning possible. Furthermore the co-stimula-
tion and co-suppression define implicit pathways of
communication between the different elements (syn-
opsis nodes) of the immune network which act like
an adaptive and distributed set of agents that track
the distribution of the input data stream. This leads
to a phenomenon known as emergence, where com-
plex and organized global behavior can arise from
the interaction of simple local components. Exam-
ples can be found in ant colonies, bee swarms and
bird flocks [8,9,22]. In the context of mining evolv-
ing data streams, this kind of collaborative behavior
is expected to enhance memory in a distributed
manner, while affecting the dynamics of learning.
These crucial characteristics may well be essential
to learning and adaptation in a single-pass setting,
just as they are crucial to survival in dynamic
environments.

Even though measures such as the cosine and
Jaccard similarities have been prevalent in the
majority of Web clustering approaches, they may
fail to explicitly seek profiles that achieve high cov-
erage and high precision simultaneously. Because of
the paucity of space, we only presented results com-
paring MinPC with the cosine similarity. However,
this is supported by previous research that has
shown that the difference between cosine and Jac-
card, and most other popular measures tends to
be slim in information retrieval applications because
they are all monotonic with respect to each other
[23]. The MinPC similarity on the other hand, is
based on two non-monotonic measures (precision
and coverage), and is expected to break this bond
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of monotonicity. Our simulations confirmed that
the MinPC similarity does a better job than cosine
similarity in learning from a stream of evolving data
in a single pass setting, when the data stream exhib-
its drastic changes, and under restrictive memory/
space allocation (a small synopsis size). This is a
desired property in most massive data streaming
applications, where memory space tends to be
severely limited compared to the data throughput.
It is important to note that our results correspond
to a very challenging scenario, where each datum
(a user session or a text document) is processed only
once. It is also important to note that using the min-
imum of precision and coverage or in fact the min-
imum of any two drastically different measures leads
to a non-differentiable optimization criterion
(because of the Minimum operator) that rules out
using other well known unsupervised learning tech-
niques such as K Means and most of its variants.
Because our stream mining approach is not based
on gradients for estimating cluster representatives,
it can handle such scenarios.

Being able to evaluate and compare different
methods in the dynamic stream framework can be
a painstaking effort, especially for large data sets
with many topics/trends. Hence, we have also pre-
sented an innovative strategy to evaluate the discov-
ered profiles/trends using specialized metrics and a
simple visualization method showing the hits based
on the two criteria of high precision and high cover-
age separately. The differences between the visual-
izations with these two criteria (such as between
Fig. 4(a) and (b)) indicate that most of the overlap-
ping topics should be synchronized with respect to
coverage, but not so much with respect to precision.
This is a very desirable property that further asserts
the importance of both precision and coverage in
evaluating the learned profile summaries and how
they interact. While overlapping topics may register
high coverage with respect to each other, it is pref-
erable that precision be more restrictive, lest the dis-
tinction between the specific categories be
compromised. Hence even as a visualization strat-
egy, our plots can provide rich information in terms
of both overlap and specificity of the evolving trends
in a dynamic scenario.

The logistics of maintaining, caching, or discard-
ing old profiles are much less crucial with our
approach than with most existing techniques. Even
if discarded, older profiles that re-emerge later,
would be re-learned from scratch just like com-
pletely new profiles. Our approach is modular and

generic enough that it can be extended to handle
richer Web object models, such as more sophisti-
cated Web user profiles and Web user sessions, or
more elaborate text document representations. The
only module to be extended would be the similarity
measure that is used to compute the stimulation lev-
els controlling the survival, interaction, and prolifer-
ation of the learned synopsis node profiles.

In the future, we plan to further investigate vali-
dation metrics that are specifically targeted at the
framework of mining evolving data streams, and
study their prediction ability for the performance
of real-time dynamic personalization strategies,
such as recommender systems that rely on the con-
tinuously evolving stream synopsis as a knowledge
base of dynamic profiles.
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