
Dynamic and Scalable Evolutionary Data Mining: An
Approach based on a Self-Adaptive Multiple Expression

Mechanism

Olfa Nasraoui, Carlos Rojas, and Cesar Cardona

Department of Electrical and Computer Engineering, The University of Memphis
Memphis, TN 38152

�onasraou, crojas, ccardona�@memphis.edu

Abstract. Data mining has recently attracted attention as a set of efficient techniques that
can discover patterns from huge data. More recent advancements in collecting massive
evolving data streams created a crucial need for dynamic data mining. In this paper, we
present a genetic algorithm based on a new representation mechanism, that allows several
phenotypes to be simultaneously expressed to different degrees in the same chromosome.
This gradual multiple expression mechanism can offer a simple model for a multiploid rep-
resentation with self-adaptive dominance, including co-dominance and incomplete domi-
nance. Based on this model, we also propose a data mining approach that considers the
data as a reflection of a dynamic environment, and investigate a new evolutionary approach
based on continuously mining non-stationary data sources that do not fit in main memory.
Preliminary experiments are performed on real Web clickstream data

1 Introduction and Motivation

1.1 The need for “Adaptive Representation and Dynamic Learning” in Data Mining

Data mining has recently attracted attention as a set of efficient techniques that can discover
patterns from huge data sets, and thus alleviate the information overload problem. The further
advancement in data collection and measurements led to an even more drastic proliferation of
data, such as sensor data streams, web clickstreams, network security data, news and intel-
ligence feeds in form of speech, video and text, which in addition to scalability challenges,
further stressed the fact that the environment in which we live is constantly changing. Thus,
there is a crucial need for dynamic data mining, Specifically, within the context of data mining,
there are two scenarios that call on dynamic learning:

(i) Scenario 1: The data supporting the learning task (including its nature, structure, and
distribution), the goals of the learning task, or the constraints governing the feasible solutions
for this task may be changing. A typical example today lies in mining sensor and data streams.

(ii) Scenario 2: The mechanism that is used to process the data for data mining may mimic
the previous dynamic learning scenario. For instance, the size of the data may be huge, and thus
it cannot fit in main memory, and we opt to process it incrementally, one sample at a time, or in
chunks of data. In this case, there is no warranty that the different increments of data will reflect
the same distribution. Hence this can be mapped to the previous dynamic learning scenario.

The type of flexibility and adaptation that is called for when learning in dynamic environ-
ments is nowhere to be found more than in nature itself. For instance, the way that DNA gets
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transcribed and synthesized into elaborate protein structures is dynamic. Genes get promoted
and suppressed with varying degrees and in a dynamic way that adapts to the environment even
within a single lifetime.

1.2 Contributions and Organization of this Paper

In this paper, we present the Soft Structured Genetic Algorithm (s�GA) algorithm, and illustrate
its use for non-stationary objective function optimization. We also adapt this approach to evolu-
tionary data mining in non-stationary environments. s �GA uses a gradual multiple expression
mechanism that offers a simple model for a multiploid representation with self-adaptive domi-
nance, including co-dominance, where both haploid phenotypes are expressed at the same time,
as well as incomplete dominance, where a phenoptypical trait is expressed only to a certain
degree (such as in certain flowers’ colors).

Justifying the Choice of Multiploidy as the Underlying Adaptation Mechanism Some work
on dynamic optimization has solely relied on hypermutation to recover from environmental
changes [1]. Furthermore, Lewis et al. [2] have empirically shown that high mutation rates, ap-
plied when an enviroment change is detected, can outperform a simple diploid representation
scheme. However, in many data mining problems, the dimensionality is extremely high, rang-
ing in the millions in the case of web usage and gene sequence data. For example, each URL
on a website can be mapped to a different attribute. This will lead to an excessive devotion of
the computing resources just for the bit mutations, and slow the search process. Moreover, the
comparative results in [2] were based on diploidy with a simple adaptive dominance mechanism
and uniform crossover that does not take into account the arbitrary permutations of the subchro-
mosomes within the diploid chromosome. In fact, most existing multiploidy schemes perform
the crossover in a blind way between two parent chromosomes without any consideration to the
important information that differentiates each subchromosome from the others. When the dom-
inance genes are evolved together with the structural information genes, this blind crossover
can be shown to cause all the chromosomes and even their subchromosomes to converge to an
identical copy in the long term. This in turn defeats the purpose of multiploidy which serves
primarily as a memory bank and a source of diversity. For these reasons, we present a new
specialized crossover that avoids this problem by encouraging crossover between only the most
similar subchromosomes, hence preserving the diversity within each chromosome.

Problems with the Current State of the Art in Web Usage Mining and New Contributions
The majority of web mining techniques (see Section 2.2) assume that the entire Web usage data
can reside in main memory. This can be a disadvantage for systems with limited main memory,
since the I/O operations would have to be extensive to shuffle chunks of data in and out, and thus
compromise scalability. Today’s web sites are a source of an exploding amount of clickstream
data that can put the scalability of any data mining technique into question. Moreover, the Web
access patterns on a web site are very dynamic in nature, due not only to the dynamics of Web
site content and structure, but also to changes in the user’s interests, and thus their navigation
patterns. The access patterns can be observed to change depending on the time of day, day of
week, and according to seasonal and external events. As an alternative to locking the state of
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the Web access patterns in a frozen state depending on when the Web log data was collected
and preprocessed, we propose an approach that considers the Web usage data as a reflection of
a dynamic environment, and investigate a new evolutionary approach, based on a self-adaptive
multiploidy representation, that continuously learns dynamic Web access patterns from non-
stationary Web usage environments. This approach can be generalized to fit the needs of mining
dynamic data or huge data sets that do not fit in main memory.

Organization of this Paper The remainder of this paper is organized as follows. We start with
a background overview in Section 2. Then, in Section 3, we present a modification to the GA,
based on a soft multiple Expression mechanism, for non-stationary function optimization. Based
on the soft multiple Expression GA model, we present in Section 4, an evolutionary approach,
called DynaWeb, for mining dynamic Web profiles automatically from changing clickstream
environments. In Section 5, we present simulation results for synthetic non-stationary fitness
functions. Then, in Section 6, we present experimental results that illustrate the performance of
DynaWeb in mining profiles from dynamic environments on a real website. Finally, we present
our conclusions in Section 7.

2 Background

2.1 Genetic Optimization in Dynamic Environments

Dynamic objective functions can make the evolutionary search extremely difficult. Some work
has focused on altering the evolutionary process, including the selection strategy, genetic op-
erators, replacement strategy, or fitness modification [3, 2, 1], while other work focused on the
concept of genotype to phenotype mapping or gene expression. This line of work includes
models based on diploidy and dominance [4], messy GAs [5], Gene Expression Messy GA [6],
overlapping genes such as in DNA coding methods [7–9], the floating point representation [10],
and the structured GA [11]. In particular, the structured GA (sGA) uses a structured hierarchi-
cal chromosome representation, where lower level genes are collectively switched on or off by
specific higher level genes. Genes that are switched on are expressed into the final phenotype,
while genes that are switched off do not contribute to coding the phenotype. A modification of
the sGA based on the concept of soft activation mechanism was recently proposed with some
preliminary results in [12]. This approach is detailed in Section 3.

2.2 Mining the Web for User Profiles

The World Wide Web is a hypertext body of close to 10 Billion pages (not including dynamic
pages, crucial for interaction with Web Databases and Web services) that continues to grow at
a roughly exponential rate in terms of not only content (total number of Web pages), but also
reach (accessibility) and usage (user activity). Data on the Web exceeds 30 Terabytes on roughly
three million servers. Almost 1 million pages get added daily, and typically, several hundred Gi-
gabytes are changed every month. Hence, the Web constitutes one of the largest dynamic data
repositories. In addition to its ever-expanding size and lack of structure, the World Wide Web
has not been responsive to user preferences and interests. Personalization deals with tailoring
a user’s interaction with the Web information space based on information about him/her, in
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the same way that a reference librarian uses background knowledge about a person or context
in order to help them better. The concept of contexts can be mapped to distinct user profiles.
Mass profiling is based on general trends of usage patterns (thus protecting privacy) compiled
from all users on a site, and can be achieved by mining user profiles from the historical web
clickstream data stored in server access logs. A web clickstream is a virtual trail that a user
leaves behind while surfing the Internet, such as a record of every page of a Web site that the
user visits. Recently, data mining techniques have been applied to discover mass usage patterns
or profiles from Web log data [13–17]. In [17], a linear complexity Evolutionary Computa-
tion technique, called Hierarchical Unsupervised Niche Clustering (H-UNC), was presented for
mining both user profile clusters and URL associations in a single step. The evolutionary search
allowed HUNC to exploit a subjective domain specific similarity measure, but it was limited to
a stationary environment.

3 The Soft Multiple Expression Genetic Algorithm (s�GA)

In the Soft Structured Genetic Algorithm (s�GA), the lower level or structural information genes
are no longer limited to total expression or to none. Instead, they can be expressed to dif-
ferent continuous degrees. Hence, several phenotypes can be simultaneously expressed in the
same chromosome, but to different degrees. This gradual multiple expression mechanism can
offer a simple model for a multiploid representation with self-adaptive dominance, including
co-dominance, where both haploid phenotypes are expressed at the same time, as well as in-
complete dominance, where a phenoptypical trait is expressed only to a certain degree (such
as in the color of some flowers). Compared to the structured GA, in the soft activation mech-
anism, the activation of the subchromosomes in the lower levels is not a crisp value (active or
not). Instead, every subchromosome has a soft activation/expression value in the interval ��� ��.
This allows the expression of multiple subchromosomes. To get this soft activation, the number
of redundant subchromosomes is fixed to ��. The dominance mechanism, traditionally used to
decide the final phenotype that gets expressed is not fixed a priori, but rather adapts by evolution
to express the best-fit subchromosomes depending on the current environment. The dominance
or activation value for each subchromosome is controlled by a soft activation gene, � �, a real
number in the interval ��� ��. The values for the soft activations are obtained as follows. In gen-
eral, if there are �� soft activation genes ��� � � �� �� � � � � ��, each encoded on �� bits, the
value �� for the soft activation gene �� is:

�� �

�
�����
�����

� ��
���

����� �� �

�
��

� ��
���

����� � �
(1)

Where �� is the decimal value of the �� bits coding the �� soft activation gene. Therefore
�� � ��� ��, and

���

��� �� � �. This has the advantage of keeping a chromosome with the same
data encoding (binary) for both the activation and the information genes. The activation genes
are constrained to sum to 1 in the preliminary model, but this constraint is not required. Hence,���

��� �� � �. But they can be nonzero simultaneously. This means that several different ex-
pressions can co-exist in the same population, same generation, and same chromosome. It is
this feature that is expected to allow for gradual adaptations of the genome to dynamic environ-
ments. The fitness computation of this genetic algorithm can consider all the subchromosome
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expressions in order to compute an aggregate fitness for the entire chromosome. This is accom-
plished by a weighted fitness. However, other aggregation mechanisms, such as the fitness of the
maximally activated subchromosome, or the maximum of the fitnesses among the sufficiently
activated subchromosomes, are possible. The weighted fitness is given by

� �

���
���

�� ��� (2)

Modified Two Point Crossover In this modification, first, a usual two point crossover is made
on the structural genes. The crossover points are selected such that an offspring inherits the
same proportion of activation bits from the parent, as the proportion of structural bits, that is
inherited. Then, a usual two point crossover is performed on the activation genes.

A New Specialized Crossover for Multiploid ChromosomesThis specialization performs an
independent crossover for each information subchromosome. First, a measure of the distance
(the phenotypical distance) between the subchromosomes of the parents is computed, and each
subchromosome from one parent is paired with the most similar unpaired subchromosome from
the other parent. Next, a one point crossover between the paired subchromosomes is done (some
care is taken to guarantee that all the subchromosomes participate in the crossover). Finally,
the activation genes are crossed, by performing a one point crossover between each pair of
corresponding activation strings (the correspondence is obtained from the matching between
the paired subchromosomes).

Advantages of the soft activation mechanismThe soft multiple expression and activation
mechanism is expected to have the following advantages:

1. All the genotype data in the chromosome can be expressed to some degree. However, this
level of expression can depend on the goodness and activation of all the subchromosomes.

2. The inherently redundant information, and the soft activation mechanism provide a robust
chromosome. In order to damage the quality of the chromosome, a significant change must
concurrently disrupt the data in the activation and information genes.

3. Depending on the activation values, and on how they are interpreted, more than one soft
genotype can map to a single phenotype. Similarly, a single soft genotype can map to sev-
eral phenotypes. This property has been lately recognized as very desirable to solve highly
complex optimization problems [6].

4 DynaWeb: Mining Web Usage Data in Dynamic Environments

4.1 Extracting Web User Sessions

The access log for a given Web server consists of a record of all files accessed by users. Each
log entry consists of: (i) User’s IP address, (ii) Access time, (iii) URL of the page accessed, � � �,
etc. A user session consists of accesses originating from the same IP address within a predefined
time period. Each URL in the site is assigned a unique number 	 � ��� � � � � ���, where ��
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is the total number of valid URLs. Thus, the ��� user session is encoded as an �� -dimensional
binary attribute vector ���� with the property



���
� �

�
� if the user accessed the 	 �� URL during the ��� session
� otherwise

4.2 Assessing Web User Session Similarity

Due to the asymmetric binary nature of the URL attributes, in this paper, we use the cosine sim-

ilarity measure between two user-sessions, ��	� and ��
�, given by �	
 �
���

��� �
���
�
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���
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Finally, this similarity is mapped to the dissimilarity measure ����
� �	 � ��� �	
	
�
�

4.3 Mining Web User Profiles by Clustering Web Sessions

The proposed dynamic evolutionary Web mining algorithm, DynaWeb uses the s �GA algorithm
in representing and evolving the population. It uses the folowing representation: Each chro-
mosome consists of �� subchromosomes. Each subchromosome encodes a possible session
prototype or profile that consists of a binary string of length �� URLs, with same format as the
binary session attribute vectors �� defined in Section 4.1. Hence, each chromosome may encode
different profiles, where each profile can be expressed to a certain degree in ��� ��. The cosine
based dissimilarity measure, defined in Section 4.2, is used to compute the distance between
session data and candidate profiles.

The fitness value, ��, for the ��� candidate profile, ��, is defined as the density of a hypo-
thetical cluster of Web sessions with �� as a summarizing prototype or medoid. It is defined as

�� �
��

��� ���


�
�

� where ��� is a robust weight that measures how typical a session �� is in the ���

profile, and is given by

��� � 
���
����
����

� (3)

��� is a robust measure of scale (dispersion) for the � �� profile, ���� is a distance measure
from session �� to profile ��, and � is the number of data points. Note that the robust weights
��� will be small for outliers, hence offering a means of distinguishing between good data and
noise. The scale parameter that maximizes the fitness value for the � �� profile can be found by

setting ���
�
�

�

� � to obtain ��� �
�

�
��� ����

�
��

�
�

�
��� ���

� To get unbiased scale estimates, the above scale

measure should be compensated by a factor of 2, which results in

��� �

��
��� ����

�
����

��� ���

� (4)

Therefore, ��� and ��� will be alternatively updated using (3) and (4) respectively, for 3
iterations for each individual, starting with an initial value of � �

������
 , and using the previous
values of ��� to compute the weights ��� . This hybrid genetic optimization converges much
faster than a purely genetic search. More details about the underlying mechanism for stationary
environments can be found in [18] and [17].
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5 Simulation Results for Synthetic Non-Stationary Fitness Functions

The s�GA was applied to the alternating optimization of two non-overlapping objective func-
tions, �� and ��, defined in the interval ��� ��, and each having a single peak with height

� �. These functions are translations of the function � ��	 �
�
����������

�

���
, and given by

����	 � � ���
� �	 and ����	 � � ��� ���	. The non-stationary optimization was based on
periodical swappings between �� and ��, as fitness functions, every � � �� generations for a
total of 300 generations. In all experiments, the population size was 200, the crossover rate was
0.9, and the mutation rates were 0.01 and 0.05 for the structural and activation bits, respectively.
First, we plot the proportion of Good chromosomes (individuals that accomplish more than 
��
of the optimal fitness value) for each one of the evaluated functions versus the generation num-
ber. Next, we plot the average and best chromosome performance (defined below) against the
generation number. The entire procedure was repeated 30 times and average results are reported
in the plots. The s�GA representation consisted of 2 binary subchromosomes, each consisting
of 10 structural information bits encoding a real number in ��� ��. Each subchromosome was
expressed by a 3-bit activation gene, resulting in a total chromosome length of 26.

The fitness function of the chromosome was defined as the weighted (by the activation val-
ues) aggregation of the fitnesses of all their subchromosomes. However, a single chromosome
truly expresses different phenotypes. This led us to define the following measures: (i) Activa-
tion threshold, �: Sufficient activation value for considering a subchromosome as “activated”.
In our experimentats, we used � � ���, i.e., 
�� of the expected activation per gene, (i.e.,
��
�����	 given a uniform activation distribution on �� subchromosomes). (ii) Subchromo-
some fitness:subchromosome fitness evaluated using the current objective function. (iii) Best
Expressed Subchromosome:subchromosome with highest subchromosome fitness among the
ones with activation exceeding �. (iv) Chromosome performance:Fitness of the Best Ex-
pressed Subchromosome. In the new specialized crossover, special care is taken so that only
similar subchromosomes are combined, regardless of their order inside the chromosome. From
the point of view of exploitation, this recombination operator performs very well, contributing
to the fast adaptation of the population to each new environment (see Figs. 1(c) and (d)).
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Fig. 1. Results for non-stationary function optimization, averaged over 30 runs (a,b) with modified two
point crossover versus (c,d) with specialized crossover. (a,c) show Proportion of Good subchromosomes,
while (b,d) show Average and Best Chromosome Performance.
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6 Dynamic Web Usage Mining Experimental Results

The real clickstream data used in this section consists of 1703 sessions and 369 URLs extracted
from Web logs of a department’s website. The following experiment was performed to illus-
trate how an evolutionary algorithm can be used for mining dynamic data to discover Web user
profiles. In order to simulate a non-stationary environment for Web mining in a controlled ex-
periment, we used a coarse partition previously obtained and validated using H-UNC [17], and
partially listed in Table 1, in order to consider the sessions that were assigned to each cluster as
representing a different environment. Thus, each environment corresponds to a different Web
usage trend. The sessions from these clusters were split into 20 different clickstream data sets,
each one consisting of the sessions that are closest to one of the 20 profiles. The Genetic algo-
rithm tried to evolve profiles, while facing a changing data set obtained by alternating the data
from each of the 20 usage trends. The process was repeated for several epochs, each time pre-
senting the succession of different data sets in alternation, simulating non-stationary observed
usage trends.

Table 1. Summary of some usage trends previously discovered using Hierarchical Unsupervised Niche Clustering (only URLs with top 3 to 4 relevance weights shown in each profile)

�

�
�
��� �

�
�
� �� �

0 106 �0.99 - /people index.html�, �0.98 - /people.html�,�0.97 - /faculty.html�

1 104 �0.99 - /�, �1.00 - /cecs computer.class�

2 177 �0.90 - /courses index.html�, �0.88 - /courses100.html�, �0.87 - /courses.html� , �0.81 - /�

3 61 �0.80 - /�, �0.48 - /degrees.html�, �0.23 - /degrees grad.html�

4 58 �0.97 - /degrees undergrad.html�, �0.97 - /bsce.html�, �0.95 - /degrees index.html�

5 50 �0.56 - /faculty/springer.html�,�0.38 - /faculty/palani.html�

6 116 �0.91 - /˜saab/cecs333/private�, �0.78 - /˜saab/cecs333�

12 74 �0.57 - /˜shi/cecs345�, �0.45 - /˜shi/cecs345/java examples�, �0.46 - /˜shi/cecs345/Lectures/07.html�

13 38 �0.82 - /˜shi/cecs345�, �0.47 - /˜shi�,�0.34 - /˜shi/cecs345/references.html�

14 33 �0.55 - /˜shi/cecs345�,�0.55 - /˜shi/cecs345/java examples�, �0.33 - /˜shi/cecs345/Projects/1.html�

15 51 �0.92 - /courses index.html� , �0.90 - /courses100.html�, �0.86 - /courses.html�,�0.78 - /courses200.html�

16 77 �0.78 - /˜yshang/CECS341.html�,�0.56 - /˜yshang/W98CECS341�,�0.29 - /˜yshang�

19 120 �0.27 - /access� , �0.23 - /access/details.html�

We simulated the following dynamic scenarios:
scenario 1 (straight):We presented the sessions to DynaWeb one profile at a time for 50 gen-
erations each: sessions assigned to trend 0, then sessions assigned to trend 1, � � �, until trend
19.
scenario 2 (reverse):We presented the sessions to DynaWeb one profile at a time for 50 gen-
erations each, but in reverse order: sessions assigned to trend 19, � � �, until sessions assigned to
trend 0.
scenario 3 (multi-trend): The sessions are presented in bursts of simultaneous multiple usage
trends for 200 generation per multi-trend: First the sessions in profiles 7 and 8 are presented
together for 200 generations, followed by the sessions in profiles 9 and 14, and finally by profiles
15 and 16, to test diversity as well as dynamic adaptation.
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The proposed algorithm, DynaWeb, was applied with specialized crossover, a population of
�� � �� individuals, initialized by selecting sessions randomly from the input data set, and
with chromosome encoding based on � subchromosomes, each activated by one of � � � �
continuous valued activation genes. Each activation gene is encoded on 3 bits. The crossover
probability was ��� per subchromosome, and the mutation probability was ���� per bit for the
structural genes, and ���� per bit for the activation genes. The fitness of a chromosome was
computed as the fitness of the subchromosome with maximum activation value in the case of
scenarios 1 and 2, and as the combined fitness for scenario 3 to encourage diversity in this mul-
timodal scenario. The ability of the population to evolve in a dynamic way when facing each
new environment was evaluated in each generation by comparing the good individuals in the
population to the ground-truth profiles, �� �, (� � �� � � � � ��). To do this, we defined as good
individuals, those individuals that have a combined fitness exceeding ����� � ����	��, where
���� and ���� are the maximal and average fitness in the current generation, respectively. Be-
fore comparing an individual to the ground truth profiles, an expressed phenotype must first be
extracted. In our case, the active (i.e., with activation gene value � �) subchromosome with
highest fitness, was used to yield the final expressed phenotype. It is this phenotype that is com-
pared with each of the ground-truth profiles in each generation. We do this by computing the
cosine similarity between the phenotype expressed by each good chromosome and each of the
ground-truth profiles, �� �, � � �� � � � � ��. The similarities computed using all the good chro-
mosomes are averaged in each generation, to yield measures ��� for each ground-truth profile,
�� �, � � �� � � � � ��. These measures are used to assess whether the evolution is able to adapt to
each change in the environment. Ideally, adaptation to the � �� environment is quantified by the
fact that ��� gradually becomes higher than all other ��� � 	 �� �.

The above procedure was repeated 20 times and the results are averaged. Stochastic Vi-
ral injection/replacement was used. This phenomenon is different from traditional evolutionary
techniques, in that genetic material from an external organism gets injected into the host organ-
ism’s DNA. It is common with viruses such as the AIDS virus. Given the nature of our data
driven approach, it is expected that this operation will refresh the current genome with vital
and current information from the new environment. This step stochastically replaced with a ���
injection rate per generation the most active subchromosome from the worst individual of the
current population (based on their combined chromosome fitness) with data randomly selected
from the data set being presented in the current generation. The results for scenario 1: straight
order are shown in Fig. 2 and Fig. 3, for DynaWeb and the Simple GA, respectively. Fig. 2, which
is better viewed in color, shows that as each environment comes into context, the genomes in the
current population gradually evolve to yield candidate profiles that match the new environment.
That is, whenever the environment changes from 	 to �, the similarity measure that is the high-
est gradually switches from being ��� to becoming ���. Hence, the genome succeeds in tracking
the dynamic web usage trends, which is the desired goal. We have also observed a successful
adaptation of the expression/activation genes, switching between different parts of the chromo-
some to track the changing environments. We note that the average similarity, ���, achieved for
certain usage environments (such as profile 19) are relatively low. This is because the sessions
in these environments have more variability, contain more noise, and thus form a less compact
cluster, as can be judged by their lower URL relevance weights in Table 1. Fig. 2 also shows a
desired property in the cross-reaction between overlapping usage trends. For example the first
5 usage trends overlap significantly since they represent outside visitors to the website, mostly
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prospective students, with slightly different interests. Fig. 3 shows that the simple GA yields a
population that is too slow to adapt, and with lower quality.

The results using DynaWeb for scenario 2: reverse order and for scenario 3: multi-trend are
shown in Figure 4 and Figure 5, respectively. Figure 4 shows that the order of presentation of the
environments is not important, since it is merely a vertical reflection of the evolution for scenario
1. Figure 5 shows the ability of DynaWeb to track multiple profiles simultaneously, even as they
change. Except for the first epoch, the remaining epochs show a consistent adaptation to the
presented usage trends, since the population achieves highest similarity to the two current usage
trends, as compared to the remaining 4 trends. The improvement in adaptation starting from
the second cycle shows the presence of a good memory mechanism that is distributed over the
different subchromosomes of the population, a memory that comes into context, i.e. becomes
expressed when it is relevant in the current context, and goes dormant in other contexts.

7 Conclusion

For many data mining tasks, the subjective objective functions and/or dissimilarity measure
may be non-differentiable. Evolutionary techniques can handle a vast array of subjective, even
non-metric dissimilarities. We proposed a new framework that considers evolving data, such as
in the context of mining stream data, as a reflection of a dynamic environment which therefore
requires dynamic learning. This approach can be generalized to mining huge data sets that do
not fit in main memory. Massive data sets can be mined in parts that can fit in the memory buffer,
while the evolutionary search adapts to the changing trends automatically. While it is interest-
ing to compare the proposed approach against other standard dynamic optimization strategies,
one must keep in mind that domain knowledge, scalability, and a data-driven learning frame-
work are crucial to most real life data mining problems, and this in turn may require nontrivial
modifications to most existing techniques including those that are based on adaptive case-based
memories, hypermutation, and simple dominance schemes.
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