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1 Introduction

In addition to its ever-expanding size and lack of structure, the World Wide Web
has not been responsive to user preferences and interests. Personalization deals with
tailoring a user’s interaction with the Web information space based on information
about him/her, in the same way that a reference librarian uses background knowl-
edge about a person in order to help them better. For example, the phrase “theory
of groups” has completely different meanings for a sociologist and a mathematician.
In this case, the phrase is the same, while the contexts are different. The concept of
conterts can be mapped to distinct user profiles. Mass profiling is based on general
trends of usage patterns (thus protecting privacy) compiled from all users on a site,
and can be achieved by mining user profiles from the historical data stored in server
access logs.

Recently, data mining techniques have been applied to extract usage patterns
from Web log data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Of relevance to this paper is
our previous work [9, 10, 11] where we have proposed new robust and fuzzy rela-
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tional clustering techniques that allow Web usage clusters to overlap and that can
detect and handle outliers in the data set, together with a new subjective similar-
ity measure between two Web sessions, that captures the organization of a Web
site, was presented and a mathematical model for “robust” Web user profiles and
quantitative evaluation means for their validation. Unfortunately, the computation
of a huge relation matrix added a heavy computational and storage burden to the
clustering process.

In order to meet Web mining challenges, it is desired for a clustering technique
to have the following attributes: (%) Robustness to noise: Web data is noisy by na-
ture and a single outlier can completely derail a traditional clustering method. (%2)
Ability to determine the number of clusters/categories automatically: also known
as unsupervised clustering, a notoriously difficult problem known for its high com-
putational costs and sensitivity to noise. (i) Ability to yield a multi-resolution
categorization of the data: A hierarchical approach offers a richer description of
the data in contrast to the flat view of single-level clustering, and can accelerate
the clustering process. (#v) Insensitivity to initial conditions: The most computa-
tionally efficient clustering techniques such as prototype-based techniques find the
prototypes or the partition by local analytical optimization of a criterion function.
Hence, they are sensitive to initialization. (v) Ability to mine only good clusters:
Classical clustering techniques tend to force a structure on all regions of the data
space, even where no structure exists. This attribute is referred to as cluster min-
ing by Etzioni and Perkowitz [5] and is closely intertwined with robust clustering
as will be seen in this paper. (wi) Ability to deal with atypical data sets and ar-
bitrary similarity measures: Current approaches avoid the feature representation
dilemma of Web data by resorting to relational clustering or association rule dis-
covery, both carrying a high computational and/or storage burden. A classical
non-relational approach requires a differentiable dissimilarity measure. However,
for DM problems, a domain specific similarity measure should be designed free of
any constraints. (viz) Efficiency: Current approaches require the computation of
all pairwise similarities (quadratic complexity) or the discovery of all association
rules [12] prior to discovering user profiles, hence relying on two relatively expensive
data mining steps. Of particular interest, is the discovery of frequent sets of URLs.
Since URL associations tend to occur with very low support in Web log files, this
step can become prohibitively expensive. In this paper, we present a quasi-linear
complexity technique for mining both user profile clusters and URL associations in
a single step.

Recently [13], we have presented a new evolutionary approach to clustering
based on the Unsupervised Niche Clustering algorithm (UNC). Our clustering tech-
nique exploits the symbiosis between clusters in feature space and genetic biological
niches in nature. UNC seeks dense areas in feature space and determines their
number by converting the clustering problem into a multimodal function optimiza-
tion problem within the context of genetic niching. Genetic Optimization makes
UNC much less prone to suboptimal solutions than other objective function based
approaches. Additionally, the use of robust weights makes UNC robust in the pres-
ence of noise and outliers. However, UNC was formulated for the 2-D case, based
on a Fuclidean metric space representation of the data.



In this paper, we propose a Hierarchical modification of UNC, called H-UNC,
that departs from the traditional limited flat view of the data, and generates in-
stead, a hierarchy of clusters which give more insight to the Web mining process, and
speeds it up considereably. We use H-UNC as part of a complete system of knowl-
edge discovery in Web usage data. Our new approach does not necessitate fixing
the number of clusters in advance, can provide profiles to match any desired level of
detail or resolution, and requires no analytical derivation of the prototypes. Thus, it
can handle a vast array of general subjective, even non-metric dissimilarities, mak-
ing it suitable for many applications, particularly in data and Web mining. Our
web mining approach also discovers associations between different Web pages based
only on the user access patterns or profiles, and not on the Web site page content.
These associations are meaningful only within well defined distinct profiles/contexts
(context-sensitive) as opposed to all or none of the data (context-blind). This ap-
proach of discovering context-sensitive associations via clustering can be generalized
to other transactional data. In this paper, we also derive interesting quantitative
goodness measures for the discovered associations and their relation to profile based
URL recommendations.

The remainder of this paper is organized as follows. In Section 2 we review
genetic niching methods. In Section 3, we explain our Knowledge Discovery in Web
Log files process for web mining, and present quantitative goodness measures for the
discovered profiles, associations, and subsequent URL recommendations. In Section
4, we present the Unsupervised Niche Clustering algorithm (UNC). In Section 5,
we present the Hierarchical Unsupervised Niche Clustering algorithm (H-UNC),
and adapt it to clustering Web sessions. In Section 6, we present our experimental
results. Finally, we present our conclusions in Section 7.

2 Genetic Niching

The traditional GA [14] has proved effective in exploring complicated fitness land-
scapes and converging populations of candidate solutions to a single global optimum.
However, some optimization problems require the identification of global as well as
local optima in a multimodal domain. As a result, several population diversity
mechanisms have been proposed to counteract the convergence of the population
to a single solution by maintaining a diverse population of members throughout its
search. These methods, known as niching methods [14, 15, 16, 17], were designed to
identify multiple optima within multimodal domains. Each peak in a mutlimodal
domain can be thought of as a niche. In nature, niches correspond to different
subspaces of the environment that can support different types of life such as species
or organisms. The fertility of the niche as well as the efficiency of each organism
at exploiting that fertility is what determines the number of organisms that can
be contained in a niche. This principle is at the base of how GAs should maintain
the population diversity of its members in a multimodal domain. Thus, the niches
should be populated in proportion to their fitness relative to other peaks. Mahfoud
[17] proposed an improved crowding mechanism, called “deterministic crowding”
(DC). After the mating of 2 parents, DC replaces each parent by the most similar



child only if the latter has higher fitness.

3 The Knowledge Discovery Process of Web Session
Profiling

3.1 Extracting Web User Sessions

The access log for a given Web server consists of a record of all files accessed by
users. Each log entry consists of: (i) User’s IP address, (ii) Access time, (iii) URL of
the page accessed, - - -, etc. A user session consists of accesses originating from the
same IP address within a predefined time period. Each URL in the site is assigned
a unique number j € {1,..., Ny}, where Ny is the total number of valid URLs.
Thus, the i** user session is encoded as an Ny-dimensional binary attribute vector
s(9 with the property

s — [ 1 if the user accessed the j** URL during the " session

%j 0 otherwise
The ensemble of all Ng sessions extracted from the server log file is denoted S.

3.2 Assessing Web User Session Similarity

The similarity measure between two user-sessions: s(*) and s(®) relies on two sub-
measures [9, 11]. The first measure which ignores the site structure is given by
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computation of the similarities at the structural URL level that will be used in
the computation of the similarity at the session level.

The entire Web site is modeled as a tree with the nodes representing different
URL’s. The tree is similar to that of a directory where an edge connects one node to
another if the URL corresponding to the latter is hierarchically located under that
of the former, The “syntactic” similarity between the i** and j** URLs is defined as

. The second similarity measure requires the pre-

Su(i,7) = min (1, max(l,mféaﬁ Z||)|Pj|)*1)) , where p; denotes the path traversed from
the root node (main page) to the node corresponding to the i** URL, and |p;| indi-
cates the length of this path. Note that this similarity which lies in [0, 1] basically
measures the amount of overlap between the paths of the two URLs. This overlap is
inferred directly from the URL address string by exploiting the one-to-one mapping
between the address and the site topology. The pairwise URL similarities should be
computed only once offline for a particular Web site prior to any clustering. Now
the similarity on the session level which incorporates the syntactic URL similarities
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is computed by Sa i = ZNU NG KO The final similarity given by a max-
i=1"°1 j=1"7§

imally optimisitc aggregation of Si x and Sa i is Sk = max(St ki, S2,k)- Finally,

this similarity is mapped to the dissimilarity measure d2(k,1) = (1 — Sg;)” . One of

the desirable properties of this Web session dissimilarity is that it becomes more

stringent as the accessed URLs get farther from the root because the amount of




specificity in user accesses increases correspondingly. Our syntactic similarity offers
an implicit way to capture the concept hierarchy of the URLs of a Web site while
mining the clusters and associations, and can be generalized to other transactional
databases.

3.3 Clustering Web User Sessions

The extracted sessions can be clustered using either relational or non-relational
clustering. However, the former requires the precomputation of a huge similarity
matrix, and the latter requires a method that can handle non-differentiable simi-
larity measures. In Section 5, we will present an evolutionary clustering algorithm
that can handle such arbitrary similarity measures.

3.4 Interpretation and Evaluation of the Results

The results of clustering the user session data are interpreted using the following
quantitative measures [9]. First, the user sessions are assigned to the closest clusters
based on the computed distances, dj;, from the it* cluster to the k** session. This
creates C clusters X; = {s(’“) €S | di <djr Vj# i}, for1<i<C.
The sessions in cluster X; are summarized by a typical session “profile” vector
t
9] P; = (R-l,...,HNU) . The components of P; are URL relevence weights,

estimated by the probability of access of each URL during the sessions of X; as
follows

X;.
k k
Py =p (s =11 e 1) = ||;§§||’ @

where X;; = {s(’“) € X | sg-k) > 0}. The URL weights P;; measure the significance

of a given URL to the it" profile. Besides summarizing profiles, the components of
the profile vector can be used to recognize an invalid profile which has no strong or
frequent access pattern. For such a profile, all the URL weights will be low.

The final prototypes resulting from UNC can be evaluated based on the mean
squared error or average dissmilarity, which for the i** cluster, is given by
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Another measure is the robust cardinality given by

Ni*z Z Wik, (3)
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where w;, = exp (— 2‘??2) is a robust weight (that is high for inliers/good data and
low for outliers/noise). Note that the robust cardinality and robust weights can
only be exploited when a “robust” clustering method is used to produce the final

profiles.



Measures of Goodness of Discovered Itemsets

An interesting observation about the weights, w;, is that they can be used to com-
pute a soft count of the number of transactions that are very similar to a certain
profile. As such, the robust cardinalities N; can be viewed as soft support mea-
sures for the profiles and their corresponding URL associations [12]. That is, the
URLSs relevent to a particular profile can be considered to form a soft large itemset
within that particular context. Note that the concept hierarchy of the URLSs (items)
is taken into account via our syntactic Web session similarity. This approach can
be generalized to other transactional data. Similarily, the scale or average dissmi-
larity in each cluster o}? represents a measure of compactness which is inversely
related to the strength of association between the items in the corresponding large
itemset. Therefore, the above measures are quantitative measures of goodness of
the clusters/profiles, as well as their corresponding large itemsets or inferred URL
associations.

A Direct Relation Between the Itemsets Goodness Measures and the Quality of
Subsequent Recommendations

It is easy to show, for the simpler case when Sy = S1 iy and d2(k,1) = (1 — Su),
that 1 — o}? simplifies to
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The simplest way to use the profiles to make recommendations for new Web
sessions is to simply recommend the URLs that are significant in the profile nearest
to the new session. This can be seen as implementing the rule {Spe, = Pi}.
The expression for 1 — o}? in (4) can be seen as the average of the strengths of
associations between all sessions assigned to the it" cluster and profile P;. In fact
since the similarity is correlation based, 1 — o}? is an aggregate measure of the lift
of all association rules associating sessions in the i** cluster to the pseudo-session
consisting of the significant URLs in profile P;. This is a desirable measure to
have because the lift is not prone to the weaknesses of the confidence measure,
and because it justifies and provides goodness measures of the subsequent profile
based URL recommendations. Most importantly, we should note that the above
measures are not global to the entire data set. Instead, they are specific to one
particular cluster or profile of Web sessions, hence enforcing the contezt-sensitive
nature of the discovered associations. Though the preceding discussion was from
an association rule point of view, we can see that o}? is also a measure of coding
error associated with the i*" profile when this is seen from a vector quantization
point of view (the it" profile is used as a code vector for encoding all vectors in the
ith cluster). Similarly, from a 1-NN classifier point of view, o}2 can be seen as a

measure of classification error.



4 The Unsupervised Niche Clustering Algorithm
(UNC)

4.1 Representation and Initialization

The solution space for possible cluster centers consists of n-dimensional prototype
vectors. These are represented by concatenating the binary codes of the individual
features for one cluster center into a binary string with 8 bits per feature value. The
initial centers are selected randomly from the set of feature vectors. This results in
a population of Np individuals, P, ¢ =1,---, Np.

4.2 A Robust Multi-modal Fitness Function

Since in general, we identify dense areas of a feature space as clusters, the fitness
value, f;, for the ith candidate center location, c;, is defined as the density of a
hypothetical cluster at that location. For the case of 2-dimensional clusters, the
density can be defined as

N ..
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where w;; = exp —:a’z is a robust weight that measures how typical data point x;
is in the ith cluster, o7 is a robust measure of scale (dispersion) for the i*" cluster,
d'fj is the distance from data point x; to cluster center ¢;, and NNV is the number of
data points. It can easily be seen that as a variance measure, o7 is also related to
the radius of the niche, since in this particular optimization problem each cluster

in the data set will generate a niche in the fitness landscape. For the case of n-

: . : . . . . 3
dimensional Gaussian clusters with variance o7, the normalized distance 5% follows

a x? distribution with n degrees of freedom. In particular, the probability that a
data point lies within a normalized distance of x3 , from the center is . The niche
radius is defined as that distance, d;‘-’j, from the center that encloses a high percentage
of the points in that cluster (such as a = 0.995) Hence, the niche radius is close
to Ko}, where K is approximately x5 g95. Note that with reliable estimates of the
cluster scales, o7, the robust weights w;; approaches 1 when dfj approaches zero (for
points close to the cluster center), while asymptotically approaching zero when dfj
approaches infinity (for outliers), hence offering a means of distinguishing between

good and bad data with respect to every cluster. Moreover, by taking gﬁ =0, we
N

obtain ¢; = % The above two observations lead us to conclude that the
j=1

1
objective or fitness function in (5) is expected to be optimal only at the centroid
of the cluster, even in the presence of noise, outliers, or more generally any data
that does not follow the distribution of the majority of the data in the i** cluster.
This means that the fitness measure is robust. Similarly, when a data set contains
several clusters, with reliable estimates of the different cluster scales, o2, the robust
weights w;; will only be high for points that are within the boundaries of the "



cluster. This means that the landscape of the fitness function in (5) is expected to
reach several suboptimal peaks (multiple modes) located at the centroids of these
clusters, and their identification is a multi-modal optimization problem.

The scale parameter that maximizes the fitness value for the i** cluster can
be found by setting %’_& =0 to obtain

N
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Therefore, o7 will be updated using an iterative hill-climbing procedure, using the
previous values of o7 to compute the weights w;; in (6). The scale estimation by
Hill climbing makes the entire hybrid genetic optimization process converge much
faster (typically 10 generations) than a purely genetic search . When mating takes
place, each child should inherit the scale parameter, o7, of the closest parent as its
initial scale before updating.

After convergence of the population, the best individual from each good niche
is extracted using a greedy approach [13] to obtain the set of final cluster centers,

C.

4.3 Computational Complexity

In each generation, the most extensive computational requirement for UNC consists
of computing the residuals, fitness and scale, for each of the Np individuals in the
population, and exactly Np/2 inter-niche distances, resulting in O (Np.N) compu-
tations. Since the population size tends to be a small fraction of the size of the
data set, the complexity is close to linear, and can be further reduced if clustering
is performed hierarchically.

5 Hierarchical Unsupervised Niche Clustering and its
adaptation to Web Usage Mining

We retain the principal structure of UNC presented in Section 4, except for a few
differences that result from the distinct nature of the session data. The solution
space for possible session prototypes consists of binary chromosome strings which
are defined to be the binary session attribute vectors s; defined in Section 3.1. The
fitness function remains the same as in (5), except that the Web session dissimilarity
measure, defined in Section 3.2, is used instead of the Euclidean distance to take the
Web site topology in account. The computational time of genetic optimization can
be significantly reduced if we perform clustering in a hierarchical mode. In other
words, we could cluster smaller subsets of the data using a smaller population size
at multiple levels, instead of clustering the entire data set on a single level which
would necessitate a larger population size. The computational complexiy of UNC
is O (Np.N), where Np is the population size and N is the number of data points
to be clustered. Since, in the hierarchical mode, Np can usually be a very small

fraction of N (typical example from our experiments: 15855 t© Tag5, this complexity



is much lower than that of relational clustering techniques such as Agglomerative
Hierarchical Clustering (AHC) [18], O (N%log N) and the closely related graph
theoretic based Minimum Spanning Tree (MST) [18], O (N?).

The hierarchical clustering is performed recursively starting from the top level
(lowest resolution) until a termination criterion, based on the minimum acceptable
size of a cluster, Nypit, and its maximum allowable mean squared error, a3 ;;;, is
met. Let [ denote the current level. Let X(;_1) = X1y, U--- UX(1_1)|C(1_1)| de-

note the data set partitionned at level [ —1, where X{;_;), is the ith cluster found at
level [ —1. Let C(;_;) denote the list of prototypes inducing the above partition, and
let ¥_q) = {aZ‘l_l)1 R UZ‘IQ_I)lcu_l) } denote the set of mean squared errors com-
puted for each subset of the above partition, using (2). The hierarchical clustering
procedure using UNC for Web mining is given below.

Hierarchical clustering using UNC (H-UNC' algorithm)
Fix population size, number of generations, maximum number
of levels (L);
Set starting level | = 1;
Set initial number of clusters |C(l_1)| =1;
Set initial data set to be clustered X;_1) = Xq 1), = X
Set initial set of prototypes C(;_1) = 0;
Initialize final list of prototypes P = (J;
Initialize the set of mean squared errors ¥ _1) = {az‘lz_l)1 =1}

Cluster_Recursively (X(l_l), Cu-1)> Za-1), l);
Assign all data points in X to closest prototype P; € P;
Recompute o} using (2) and N} using (3);

The procedure Cluster_Recursively () is given below.

Cluster_Recursively (Xj—1, Ci—1, , Xi—1,1)
FOR i =1 TO |C;_1| DO { /* Each prototype in C; */
IF (1 =1) or (|Xg-1);| > Nuptit and o ;, > 03,y and | < L)
THEN
{
Perform UNC clustering on data subset Xi-1);
/* will result in extracted prototypes set, Cay,;
partionned data set Xj; = Xy U+ - U &g,

and 3y; = {o}?,--- ’J;Iiz\} computed for

each subset of this partition */
Cluster_Recursively (Xy;, Ci;y Zii, L+ 1);

ELSE {
Add it" prototype to final list of prototypes, P;

}
!




5.1 Ease of Setting the Parameters

For the case of Web session clustering, all session dissimilarities are confined in
[0,1]. Hence, it is easy to set the values of parameters o7,;;;, and Nypiit, especially
in an interactive mode. As a rule of thumb, o2 ;, should be the largest tolerable
dissimilarity between sessions considered to be in the same cluster, and Ny should
be the minimum size of an acceptable cluster or profile. Even though the above
parameters will eventually determine the number of clusters at the last level of
the partitionning, they are not crucial to the performance of H-UNC because first
of all if the partitionning is done at too many levels of the hierarchy, the final
clusters will still be good (only exhibiting higher specificity or resolution). And
even with too few levels in the hierarchy, H-UNC is expected to identify as many of
the good (maximally dense as per the fitness measure) clusters as possible at that
level unlike other approaches that will simply link different clusters, thus inducing
erronous prototypes.

5.2 Comparison with Conventional Hierarchical Clustering

Our approach is substantially different from classical divisive hierarchical clustering
techniques, where more clusters are created at increasing levels of a cluster hierarchy.
This is because our approach relies on robust weights to suppress the influence of
outliers and data belonging to other clusters, and on a multiomodal optimization
approach where multiple clusters are sought in parallel at each level. This means
that at any given level of recursive clustering, even if the population size is too small,
H-UNC is expected to identify as many good clusters as the population size, while
classical hierarchical approaches are expected to yield the optimal cluster prototypes
only at the optimal level of the partition that corresponds to the known correct
number of clusters. In fact this is why H-UNC is able to perform well even with
anomalously small population sizes that would have never been appropriate with
other genetic based approaches. Finally, we note that another difference between
H-UNC and classical hierarchical techniques is that the data is re-partitionned at
the very end of clustering (the last level of the hierarchy). This means that there is
no final commitment of the data at each level. This avoids one of the well known
pitfalls of hierarchical clustering techniques, and also allows H-UNC to yield better
partitions, and hence better and more accurate profiles for Web mining.

6 Experimental Results

6.1 Synthetic Simulation Results

First, we illustrate UNC (or H-UNC with L=1)’s performance on 2-D data sets
because the results can be inspected visually and easily. We also compare UNC’s
results with K-Means [19] and the Possibilistic C-Means algorithm (PCM) [20],
a robust clustering algorithm. All three algorithms are initialized with randomly
selected centers (for PCM, this is followed by applying the Fuzzy C-Means algorithm
and computing the fuzzy average distance to initialize the scale parameters, n). Fig.



(a) (b) (c)
Figure 1. Ewvolution of the population: (a) original data (b) Initial popu-
lation, (c) population after 80 generations, (d) final extracted centers

(a) (b) (c) (d)

Figure 2. Three noisy clusters varying in size and density: (a) original
data set (b) Results of UNC, (c) Results of K-Means with C = 3 ( 2 clusters are
missed), (d) Results of PCM with C = 3 (2 clusters are identical, 1 cluster is missed;
grossly over-estimated inlier bound indicates lack of robustness)

1 shows the evolution of the population (denoted by square symbols) using UNC
for a noisy data set. The initial population is chosen randomly from the set of
feature vectors. This explains the higher concentration of solutions in the densest
areas, which converge toward the correct centers in subsequent generations. The
cluster centers found using UNC, K-Means, and PCM are shown in Figs. 2 - 3. In
these ﬁgure2s, the circular contours around each cluster center depict the normalized

. a2 . -
distance, —#, corresponding to X3 gg5- The outermost contours are called nlier

bounds, and reflect the accuracy of the final scale estimates which in turn reflect the
robustness of clustering. This is because data that falls within the outer contour of
a cluster is generally considered to be good/inlier data, while data falling beyond
it is considered to be noise/outlier data. No contours are shown for K-Means since
it does not estimate scale, and is not robust. Note that in addition to requiring a
prespecifed number of clusters, C, K-Means and PCM are not as robust as UNC.

6.2 Web Usage Mining Experimental Results

The one day access record Web log was collected in 1998 on the main site at the
University of Missouri-Columbia with Ng = 29,876 sessions and Ny = 17,665
URLs. The parameters for the robust hierarchical UNC were fixed to the following
values: The crossover and mutation probabilities are P, = 0.9 and P,, = 5 x 1075,
respectively. UNC used 10 generations per clustering with a population size, Np =
20 and Ny, = 10. Since all session dissimilarities are confined in [0,1], it is

reasonable to choose o7,,, = 0.95, 0 ,;;, = 0.3, and Ny = 50. Clusters with



(a) (c)
Figure 3. Five noisy clusters: (a) original data set (b) Results of UNC,

(¢) Results of K-Means with C = 5(1 cluster missed, another incorrect), (d) Results
of PCM with C =5 (over-estimated inlier bounds indicate lack of robustness)

cardinalities > 20 were considered sufficiently strong profiles. For the profiles, we
list the cardinality, |X;|, core cardinality, |X;*|, robust cardinality, N}, and average
dissimilarity, o} (inversely related to aggregate association lift). The symbol “—”
in the |X| column means that the core of the i‘" profile contains fewer than 20
sessions. H-UNC succeeded in delineating many real profiles reflecting typical access
patterns as seen in Tables 1 — 3 — prospective students in profile 3 at L=1, job hunters
in profile 9 at L=2, game players in profile 11 at L=2, humor seekers in profile 18
at L=3, in addition to students accessing their course pages, etc. The quality of
these clusters (or lift of the associations as discussed in Section 3) is confirmed by
their low average dissimilarity compared to the maximal value of 1.

(i) Robust profiling is obtained by retaining profile members whose robust
weights, w;;, exceed a given threshold, wp,in, equal to 0.6 in our experiments. This
allows us to concentrate on the core of each profile by filtering out the noise sessions
which end up being assigned to the closest profile. The w,y;,-core of the it* profile
is defined as X} = {s(k) € Xj|wip > Wmin}- When only sessions with weights
exceeding 0.6 are considered, some profiles (e.g. Nos. 11 at level 1) end up having
less than 20 members, hence making weak profiles. Also, the core of some clusters,
with irrelevant sessions assigned, were discovered to contain sessions with a specific
interest. The results will be examined from three different perspectives:

(ii) Multiresolution profiling: is done by examining profiles obtained with
a varying number of levels, L, in the hierarchy. As L increases, more real profiles
emerge. At level 3 (Table 3), most real profiles show a strong attraction to certain
students’ homepages, motivated by specific interests: Profiles No. 17 and 24 show
interest in popular music bands. Profile No. 26 show interest in actor “Antonio
Banderas”. Clearly, these user interests are of a different nature compared to those
of profile No. 11 (the Euler number “e”) or profile No. 16 (American literature
page). The increase in resolution can also be illustrated by the single profile (No.
9) at level 1 (Table 1) which, at level 2 (Table 2) gets split into profiles No. 10, 11,
12, and 13, showing distinct interests in four different sets of pages designed by the
same student: GIF animation, lottery games, Euler number “e”, and color blending
programs.

(iit) Inferring Associations between different URLs: Associations [12]
between different URLs can be directly inferred by simple inspection of the robust
profile vector components. In general, the relevent URLSs can be considered to form



a soft (fuzzy) large itemset. Profile No. 12 in Table 3 shows an association between
the URLs (/7¢639692/blend.html) and (/" wwwtools/colormaker). Their contents
revealed that they shared the same subject (color making tools). Profile No. 15
also shows an association between Web pages belonging to professors in different
departments. It turned out that both pages are dedicated to the history of the
sinking of the “Titanic”. Note how the above association were discovered based only
on the user access patterns or profiles and not their content. A lot can be learned
about user interests from their access patterns and profile associations. For exam-
ple, by further examining the individual significant components of the 5!* profile
vector obtained at L = 1 (career interests game based on Dr. Holland’s theory of 6
classes of work environments that fit different people’s personalities) which shows
the relevance of pages representing social, entreprising, artistic, realistic, and inves-
tigative work environments respectively, we can deduce that more people tend to
identify themselves as social (described as helpers ) than as entrepreneurial ( de-
scribed as persuaders). Also, the URL corresponding to conventional work receives
an insignificant weight in this profile. It is not surprising that few people would
rather identify themselves with this trait, described in this game page as “People
who ...., carry out tasks in detail or follow through on others’ instructions”.

Table 1. Some of the profiles discovered by H-UNC at L = 1

i| X | |xF ] N description or?
1 | 8959 | 6139 | 7002.6 main page 0.07
104 47 64.1 main page, general information about 0.71

applying to and living in MU, departments list,
admission policy, ... etc

8 94 42 60.6 Human Resources Services site at MU 0.33

9| 158 93 97.5 Accesses to /7c639692 pages: student 0.49

offering GIF animation archive, lotto games, etc

7 Conclusion

For real life data mining, the dissimilarity measure may not be a true distance
metric, and dealing with relational data is impractical given the huge dimension
of the data sets. Therefore, we presented a gquasi-linear complexity Hierarchical
Unsupervised Niche Clustering algorithm (H-UNC), that exploits the symbiosis
between clusters in feature space and genetic biological niches in nature. H-UNC
was successfully used to cluster the sessions extracted from real server access logs
into multi-resolution user session profiles, and even to identify the noisy sessions and
profiles. We have illustrated that our clustering process results in the discovery of
context-sensitive associations between different URL addresses on a given site, with
no additional cost. In general, the URLs that are present in the same profile tend to
be visited together in the same session or form a large item set. We have proposed
qualitative aggregate profile association “lift” measures, and examined them from the



Table 2. Some of the 15 Profiles discovered by H-UNC at L = 2

||

X7

N*

2

description

*2

39

24

28.1

Human Resources Services site at MU

0.15

389

200

244.9

Accesses to Human Resources Services
site (job opportunities, applications, etc)
and MU’s Employee and Administrative info site

0.31

10

46

29

28.9

Accesses to /7c639692/concise pages:
student offering GIF-89 animation archive and
info for Web pages)

0.26

11

42

27.1

Accesses to /7¢639692/lotto.html:
same student offering lotto playing games

0.1

12

74

51

50.2

Accesses to /7¢639692/exp pages
(about the euler number “e”

0.32

13

32

21

22.3

Accesses to /7¢639692/blend.html:
student offering color blending program
and to /“wwwtools/colormaker (MU site

containing color making tools in Java)

0.1

Table 3. A sample of the 34 profiles discovered by H-UNC at L = 3

|

&7

N¥*

2

description

*2
g

12

32

21

22.3

Accesses to /7¢639692/blend.html
(student offering color blending program)
and to / “wwwtools/colormaker (MU site

containing color making tools in Java)

0.1

15

33

21

21.9

Accesses to
/" joursww /alex/titanic.htm and
“socbrent/titanic.htm
(pages dedicated to the Titanic by
journalism and sociology professors)

0.2

16

949

542

611.5

Accesses to /“engmo/amlit.html: English
professor’s American literature page

0.28

17

226

86

140.4

Accesses to /7c641644 pages: student
dedicating page to music group Nirvana

0.29

18

153

112

122.7

Accesses to /7c717733/funnies
(student offering jokes’ page

0.08

24

286

154

195.4

Accesses to /7¢690403/dmb pages
(student dedicating page to music band)

0.14

26

222

172

150.5

Accesses to /7c617756 pages (student
dedicating page to actor Antonio Banderas)

0.1




points of view of coding theory, classification, and association rules. We have also
related the measures to expected future URL recommendation accuracy. Knowledge
about associations between different URLs on a given Web site can be used to
improve the design of that Web site and to better understand users’ behaviors
and their access patterns. Our web mining approach discovers associations between
different Web pages based only on the user access patterns or profiles, and not on the
page content. Also, the associations are meaningful only within well defined distinct
profiles/contexts (context-sensitive) as opposed to all or none of the data (context-
blind). This approach of discovering context-sensitive associations via clustering
can be generalized to other transactional data.

Because of its hierarchical nature and very low population size requirement,
H-UNC is significantly faster than UNC for large data sets. H-UNC inherits from
Genetic Algorithms their implicit parallelism which makes it a relatively easy can-
didate for parallelization efforts that can make it even faster. For more general
data mining applications, our approach to genetic clustering has the following ad-
vantages over previous methods: (i) It is insensitive to initialization and robust in
the presence of outliers and noise. Hence, it can cope with missing/corrupted data
and preprocessing errors more gracefully than non-robust techniques. ; (ii) it can
automatically determine the number of clusters; (iii) because of the single cluster
representation scheme used, the size of the the search space does not increase with
the number of clusters or the number of data. (iv) It is generic enough that it
can handle any type of distance/dissimiliarity measure and any type of input data
regardless of the type of preprocessing (crucial for data and Web mining). (v)
it offers the advantage of multi-resolution clustering/profiling. (vi) It can easily
be made scalable by continuously mining portions of the data instead of loading
the entire data set in memory. The structure of the algorithm does not change.
Only the extraction procedure, after each mining step, has to take into account all
the cluster prototypes/representatives discovered so far when extracting the niche
peaks. This will automatically merge re-discovered profiles/clusters with old ones
that are similar, and add newly discovered profiles/clusters to the final list. Unlike
Lamarckian learning [21], our dynamic approach to estimate the scale mathemati-
cally during genetic optimization of the cluster representatives does not disrupt the
genotype of the candidate solutions. However, it improves individual learning in the
evolutionary process by dynamically modifying the fitness landscape in a way that
will make it easier to maintain diversity and to converge closer to the niche peaks.
This can be seen as introducing a Baldwin effect [22] to hybridize evolutionary pro-
cess. We are currently investigating different approaches to make our approach
scalable to large data sets, using it for the unsupervised categorization of large text
corpuses, as well as experimenting with different recommendation approaches to
achieve evolutionary Web personalization.
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