
Robust Clustering for Tracking Noisy Evolving Data Streams∗

Olfa Nasraoui† Carlos Rojas‡

Abstract

We present a new approach for tracking evolving and noisy data
streams by estimating clusters based on density, while taking into
account the possibility of the presence of an unknown amount of outliers,
the emergence of new patterns, and the forgetting of old patterns.

keywords: evolving data streams, robust clustering, dynamic
clustering, stream clustering, scalable clustering

1 Introduction

An explosion of applications generating and analyzingdata
streamshas recently added new unprecedented challenges for
clustering algorithms if they are to be able to track changing
clusters in noisy data streams using only the new data points
because storing past data is not even an option [1, 2, 3, 4, 5].
Data streams are massive data sets that arrive with a throughput
that is so high that the data can only be analyzed sequentially and
in a single pass. There have been several clustering algorithms
that were designed to achieve scalability [6, 7] by processing
the data points in an incremental manner, or by processing the
data points in small batches. However these algorithms still treat
all the objects of the data set the same way without making
any distinction between old data and new data. Therefore,
these approaches cannot possibly handleevolving data, where
new clusters emerge, old clusters die out, and existing clusters
change. More recently, several algorithms have been proposed
and discussed more specifically within the context of stream
mining [1, 4, 5]. STREAMS [4] strives to find an approximate
solution that is guaranteed to be no worse than a number of
times the optimal. The optimal solution is based on minimizing
the Sum of Squared Distances (SSQ), which is the same as the
one used in K Means and LS estimates. The ordinary Least
Squares (LS) method to estimate parameters is not robust because
its objective function,

∑N
j=1 d2

j , increases indefinitely with the
residualsdj between thejth data point and the estimated fit, with
N being the total number of data points in a data set. Hence,
extreme outliers with arbitrarily large residuals can have an
infinitely large influence on the resulting estimate. All clustering
techniques that are based on LS optimization, such as K Means,
BIRCH [6], and Scalable K Means [7], inherit LS’s sensitivity to
noise. Also, STREAMS finds a solution that approximates the
entire data stream from beginning to end without any distinction
between old data and newer data. Hence it has no provision for

∗supported by the National Science Foundation CAREER Award IIS-0133948
to O. Nasraoui and NSF grant IIS-0431128, as well as by the National Aeronautics
and Space Administration under Grant No. AISR-03-0077-0139 issued through
the Office of Space Sciences.
†Department of Computer Engineering and Computer Science, Speed School

of Engineering, University of Louisville, Louisville, KY 40292.
‡Department of Computer Engineering and Computer Science, Speed School

of Engineering, University of Louisville, Louisville, KY 40292.

tracking evolving data streams. Fractal Clustering [1] defines
clusters as sets of points with high self-similarity, and assigns
new points in clusters in which they have minimalfractal impact.
Fractal impact is measured in terms of thefractal dimension,
and this can be shown to be related to the scale parameter or
contamination rate. In [8], we presented a recent approach for
mining evolving data streams, called TECNO-STREAMS, that
is based on artificial immune systems as a type of evolutionary
optimization of a criterion function. The most important desirable
feature of TECNO-STREAMS was the incorporation of temporal
weights that allow gradual forgetting of older portions of the data
stream, and better focus on the newer data. In this paper, we
present a different approach, based on analytical optimization
instead of evolutionary computation, and based on a different
criterion function, that explicitly optimizes the stream synopsis in
the presence of unknown noise contamination rates. CluStream
[5] is a recent stream clustering approach that performsMicro-
Clusteringwith the new concept ofpyramidal timeframes. This
framework allows the exploration of a stream over different
time windows, hence providing a better understanding of the
evolution of a stream. the main idea in CluStream is to divide the
clustering process into an online process that periodically stores
summary statistics, and an offline process that uses only these
summary statistics. Micro-clusters are an extension of BIRCH’s
Cluster Feature (CF) with temporal statistics, and the incremental
updating of the CF is similar to BIRCH. BIRCH, in turn, solves
a LS criterion because the first order statistics are nothing more
than the mean centroid values. For this reason, CluStream was
not designed to handle outliers. However, the attractiveness of
CluStream stems from its clear and interpretable ability to track
evolving clusters, because all the results can be viewed in terms of
snapshots at certain time horizons, and not just as static snapshots.
The approach proposed in this paper differs from CluStream in
two ways:(i) a robust clustering process is used to resist unknown
rates of outliers,(ii) the goal of stream clustering is to form a
continuously (non-stoppable) evolving synopsis or summary of
the data stream, while focusing more on themore recent data.

In this paper, we present a new approach for tracking evolv-
ing and noisy data streams by estimating clusters based on den-
sity, while taking into account the possibility of the presence of
an unknown amount of outliers, the emergence of new patterns,
and the forgetting of old patterns. Our approach, calledTRAC-
STREAMS(TrackingRobustAdaptiveClusters in evolving data
STREAMS), is a new approach for mining noisy and evolving data
streams that is based on a fast iterative optimization approach
amounting to robust statistical estimation, and is free of assump-
tions about the noise contamination rate or scale value. This ap-
proach draws its strength from the application ofrobust statistics
to the challengingstreamenvironment, and to a simple continu-
ous monitoring of the learned information in relation to the in-
coming data stream.

The rest of the paper is organized as follows. In Section
2, we present a new approach for mining evolving noisy data

618

streams (TRAC-STREAMS) that achieves robustness in location
and scale without any assumptions about the contamination rate
or scale value. In Section 3, we present our experimental results.
Finally, in Section 4, we present our conclusions.

2 Mining Evolving and Noisy Data Streams with
Density Based Cluster Estimation

In a dynamic environment, the data from a data streamXa are
presented to the cluster model one at a time, with the cluster cen-
troid and scale measures re-updated with each presentation. It is
more convenient to think of the data index,j, as monotonically
increasing with time. That is, the data points are presented in the
following chronological order:x1, · · · ,xN . Hence after encoun-
tering J points from the data stream, a cluster is characterized
by its location or centerci,J , its scaleσ2

i,J , and its ageti which,
to make independent of any time units, can be set to the number
of points that have been streaming since the cluster’s conception
at ti = 0. The set of clusters and their characteristic parameters
define asynopsis[9] or good summary representation of the data
stream. to summarize more basic statistics of a stream. As we
will see below, because the currency of the stream is taken into
account to define the influence zone around each cluster, the syn-
opsis will also reflect a more current summary of the data stream,
that will evolve with the changes in the data stream. In order
to adhere to the memory requirements of a stream scenario, the
maximal number of clusters is fixed to an upper bound,Cmax,
that depends on the maximum size allocated for the stream syn-
opsis. Each candidate cluster defines an influence zone over the
data space. However, since data is dynamic in nature, and has a
temporal aspect, data that is more current will have higher influ-
ence compared to data that is less current. The influence zone is
defined in terms of a weight function that decreases not only with
distance from the data to the cluster prototype, but also with the
time since the data has been presented to the cluster model. It is
convenient to think of time as an additional dimension to allow
the presence of evolving clusters.
Definition 1 (Adaptive Robust Weight): For theith cluster,Ci,
i = 1, · · · , C, we define the robust weight of thejth data point,
at the moment when the total size of the data stream accumulated
to J inputs:x1,x2, · · · ,xj , · · · ,xJ , as

wij,J = wi,J

(
d2

ij

)
= e

−
(

d2
ij

2σ2
i,J

+
(J−j)

τ

)
(2.1)

whereτ is an application-dependent parameter that controls
the time decay rate of the contribution from old data points, and
hence how much emphasis is placed on the currency of the cluster
model compared to the sequence of data points encountered
so far. This robust weight model is similar to the one used
with an immune system inspired method proposed earlier [8]
to learn a dynamic stream synopsis, however the optimization
criterion function as well as the optimization method are radically
different.d2

ij is the distance from data pointxj to cluster location
ci,J . σ2

i,J is a scale parameter that controls the decay rate of the
weights along the spatial dimensions, and hence defines the size
of an influence zone around a cluster prototype. Data samples
falling far from this zone are considered outliers. At any point
J in the stream sequence, the weight function of data pointxj

in clusterCi decreases geometrically with the age (tj = J − j)
or number of samples encountered sincexj was introduced.
Therefore the weights will favor more current data in the learning
process. Note that subsequently to each new point that is read

from the stream, and assuming that the parameters do not change
significantly as a result of a single point, each old weight would
experience a decay as follows to enable the forgetting process:

wij,J = e
−1
τ wij,(J−1)(2.2)

At any pointJ in the stream (after encounteringJ data points),
we search for the optimaldensecluster locationsci,J and scale
valuesσ2

i,J ,by optimizing the following criterion

min
ci,J ,σi,J

{
Ji,J =

J∑

j=1

wij,J

d2
ij

σ2
i,J

−α
J∑

j=1

wij,J

}
, i = 1, · · · , C,

(2.3)
The weightwij,J can also be considered as the degree of mem-

bership of data pointxj in the inlier set or the set of good points.
The first term of this objective function tries to achieve robust-
ness by minimizing the scaled distances of the good points to the
optimal cluster locations. The second term consists of the nega-
tive of a soft estimate of thecardinality (sum of weights) of the
inlier (non-outliers) set which is approximately proportional to
the estimated outlier contamination rate. Hence, by maximizing
this cardinality, the objective function tries to use as many good
points (inliers) as possible in the estimation process, via their high
weights, so that efficiency is least compromised. Thus the com-
bined effect is to optimize thedensity, i. e., the ratio of the total
number of good points to the scale. In the first term, the dis-
tances are normalized by the scale measure for several reasons.
First, this normalization counteracts the tendency of the scale to
shrink towards zero. Second, unlike the absolute distanced2

ij ,
d2

ij

σ2
i,J

is a relative measure that indicates how close a data point

is to the center compared to the inlier bound. Therefore, using
this normalized measure is a more sensible way to penalize the
inclusion of outliers in the estimation process in a way that is
independent of scale. Finally, this normalization makes the two
terms of the objective function comparable in magnitude. This
relieves us from the problem of estimating a value forα which
otherwise would depend on the data set’s contamination rate and
scale. Hence, the value ofα is fixed as follows:

α = 1.

For the generaln-dimensional case,α should be close ton, since
the ratio of the first term to the second term approaches the aver-
age of aχ2 distribution for normal distributions (a reasonable ap-
proximation, given the huge size of most data streams). Finally,
we should note thatd2

ij should be a suitable distance measure,
tailored to detect desired shapes, such as the Euclidean distance
for spherical clusters. Similar to M-estimators [10], the criterion
in (2.3) attempts to limit the influence of outliers by replacing the
square of the residuals with a less rapidly increasing loss function
of the data value. Since the objective function depends on sev-
eral variables, we can use an alternating optimization technique,
where in each iteration a set of variables is optimized while fixing
all others. This approach forms the basis of most analytical op-
timization based clustering algorithms where coupled parameters
are optimized alternatively, including Expectation Maximization
based algorithms, DENCLUE [11], as well as most K Mean vari-
ants such as BIRCH.

THEOREM 2.1. Optimal Incremental Center Update: Given the
previous centers resulting from the past(J − 1) data points,
ci,J−1, the new centroids that optimize (2.3) after theJ th data

619

point is given by

ci,J =
e−

1
τ ci,J−1Wi,J−1 + wiJ,JxJ(

e−
1
τ Wi,J−1 + wiJ,J

) .(2.4)

whereWi,J−1 =
∑J−1

j=1 wij,(J−1) = Wi,J−2 + wi(J−1),(J−1)

is the sum of the contributions from previous data points,
x1,x2, · · · ,xJ−1.

Proof. Since the time dependency has been absorbed into the
weight function, and by fixing the previous centroids,ci,J−1,
scalesσ2

i,J−1, and weightswi,j , the equations for centroid up-
dates are found by solving

∂Ji,J

∂ci,J
=

1
σ2

i,J

J∑

j=1

wij,J

∂d2
ij

∂ci,J
= 0.

Each term that takes part in the computation ofci,J is updated
individually with the arrival of each new data point using the
old values, and adding the contribution of the new data sample.
For instance, ifd2

ij is the squared Euclidean distanced2
ij =

‖xj − ci,J‖2, then we need to solve the following system of
equations for the center components.

−2
σ2

i,J

J∑

j=1

wij,J (xj − ci,J) = 0.

This results in the centerci,J given by

ci,J =

∑J
j=1 wij,Jxj∑J

j=1 wij,J

=

∑J−1
j=1 wij,Jxj + wiJ,JxJ∑J−1

j=1 wij,J + wiJ,J

.

The above equation can be rewritten in the incremental form of
(2.4) by substituting (2.2) into the contributions of the previous
J − 1 points in the first term of the sum in the above numerator.

THEOREM 2.2. Optimal Incremental Scale Update: Given the
previous scales resulting from the past(J−1) data points,σ2

i,J−1,
the new scales that optimize (2.3) after theJ th data point is given
by

σ2
i,J =

(2 + α) e−
1
τ σ2

i,J−1WDi,J−1 + wij,Jd4
iJ

(2 + α)
(
e−

1
τ WDi,J−1 + wiJ,Jd2

iJ

) .(2.5)

WDi,J−1 =
∑J−1

j=1 wij,(J−1)d
2
ij = WDi,J−2 +

wi(J−1),(J−1)d
2
i(J−1) is the sum of the contributions from

previous data points,x1, · · · ,xJ−1.

Proof. By fixing the previous values of the centroids,ci,J−1,
scalesσ2

i,J−1 and weightswi,j , the equations for scale updates

are found by solving∂Ji,J

∂σ2
i,J

= 0 and substituting∂wij,J

∂σ2
i,J

=
1

2σ2
i,J

wij,J . The scale parameter of theith cluster is given by

σ2
i,J = 1

(2+α)

∑J

j=1
wij,Jd4

ij∑J

j=1
wij,Jd2

ij

. the rest of the proof proceeds

similarly to the proof for the incremental centers.

Therefore, the algorithm for incrementally adjusting the op-
timal cluster locations and scales will consist of updates of the
prototype parameters, followed by updates of the scale parame-
ter and the weights in an iterative fashion, with the arrival of each
new data point in the stream. Note that only the cumulative statis-
tics need to be stored for each cluster at any given instant. Hence
the synopsis consists of a summary of all the clusters, where each
cluster is represented by the tuple consisting ofci,J , σ2

i,J , Wi,J ,
andWDi,J .

2.1 Learning New data points and Relation to Outlier
Detection

Definition 2 (Potential Outlier): A potential outlier is a data
point that fails the outlyingness test for the entire cluster model.
The outlier is termedpotential because, initially, it may either
be an outlier or a new emerging pattern. It is only through the
continuous learning process that lies ahead, that the fate of this
outlier will be decided. If it is indeed a true outlier, then it will
form no mature clusters in the cluster model. Several upper tail
bounds exist in statistics that bound the total probability that some
random variable is in the tail of the distribution, i.e., far from
the mean. Markov bounds apply to any non-negative random
variable, and hence do not depend on any knowledge of the
distribution. However, atighter bound can be obtained using
Chebyshev boundsif a reliable estimate of scale is available.
Again, no assumptions are made about the distributionof the
data, other than scale. Because TRAC-STREAMS provides
robust scale estimates, we will use Chebyshev bounds to test
whether a data point is an outlier.
Chebyshev Bounds:The Chebyshev bound for a random vari-
ableX with standard deviationσ is:

Pr {|X − µ| ≥ tσ} ≤ 1
t2

(2.6)

Testing a Data Point or a New Cluster for Outlyingness with
respect to clusterCi using Chebyshev Bound with Significance
Probability 1/t2: (2.6) can be rearranged in the form

Pr
{|X − µ|2 ≥ t2σ2

} ≤ 1
t2 , or equivalently

Pr

{
e
−|X−µ|2

2σ2 ≤ e−t2/2

}
≤ 1

t2

This results in the following test for outlier detection:

IF wij,J < e(−t2/2) THEN
xj is an outlier with respect to clusterCi

The same test is used in the algorithm to decide when a new clus-
ter is created, since points from new clusters can be considered as
outliers with respect to old clusters. Note that the quantityt2σ2

is referred as theChebyshev Boundfrom now on, and it is also
used to plot the contours of the learned clusters later on, since it
is considered as the distance from the centers that includes all the
inliers with probability1 − 1

t2 . We also use the same test to es-
timate the cardinalityNi for each cluster centroid as the number
of points from the input data stream that fail the outlier test.
Testing the compatibility of clustersCi and Ck with scalesσ2

i,J

and σ2
k,J using Mutual Chebyshev Bounds with Significance

Probability 1/t2: Given the distance between these two clusters,
d2

ik, if the clusters are compatible, then (2.6) can be rearranged in
the form

Pr

{
e

−d2
ik

2σ2
i ≤ e−t2/2

}
≤ 1

t2 andPr

{
e

−d2
ik

2σ2
k ≤ e−t2/2

}
≤ 1

t2

This results in the following test for testing cluster compatibility:
IF

(
dist (Ci, Ck) < t2σ2

i AND dist (Ci, Ck) < t2σ2
k

)
THEN

MergeCi andCk

The cluster with higher density defined in (2.8), is the one that
remains. Its scale is inherited, while the its new center becomes

cnew,J =
ci,JWi,J + ck,JWk,J

Wi,J + Wk,J
.(2.7)

Cluster Testing Based on DensityThe density of theith cluster
after presentingJ data points from the stream is defined as
follows:

δi =

∑J
j=1 wij,J

σ2
i,J

.(2.8)

620

Clusters (i) with low density (δi) or zero cardinality (Ni) are
eliminated as follows:

IF
(
δ(i) < δmin

)
ORNi = 0 THEN

B ← B − C(i)

}
Finally we give the steps of the TRAC-STREAMS algorithm
below:

TRAC-STREAMS:
Tracking Robust Adaptive Clusters in evolving data STREAMS

Fix the maximal number of cluster prototypes,Cmax;
Initialize centroidsci,J = xi, i = 1, · · · , Cmax;
Initialize scaleσi,J = σ0, i = 1, · · · , Cmax;
Initialize ageti = 0, i = 1, · · · , Cmax;
Initialize the sumsWi,J = WDi,J = 0, i = 1, · · · , Cmax;
Initialize C = Cmax;
Let cluster modelB = C1∪C2∪· · ·∪CC , and cluster representatives
afterJ data points, beCi = (ci,J , σi,J , ti,Wi,J , WDi,J);
FOR J = 1 TO N DO { // single pass over the data streamxJ

FOR i = 1 TO C DO
Compute distance,d2

iJ , and robust weight,wiJ,J ;
IF C < Cmax AND xJ is an outlier in all clustersCi THEN {

Create new clusterCk: B ← B ∪ Ck with k = C + 1;
ck = xJ ;
σk = σ0;
Initialize tk = Wk,J = WDk,J = 0;
C = C + 1

}
FOR i = 1 TO C DO {

Updateσ2
i,J using (2.5);

Updateci,J using (2.4);
UpdateWi,J = Wi,J−1 + wij,J ;
UpdateWDi,J = WDi,J−1 + wij,Jd2

iJ ;
Update ageti = ti + 1 ;

}
FOR i = 1 TO C DO

IF
(
δ(i) < δmin

)
ORNi = 0 THEN {

B ← B − Ci;
C = C − 1;

}
Test Clusters for Compatibility and Merge Compatible Clusters;

}

2.2 Computational Complexity

TRAC-STREAMS necessitates the iterative computations of
distances and weights for each data vector, followed by the center
and scale parameter. These are all linear in the number of
data vectors. Hence the computational complexity of TRAC-
STREAMS is O(N). At any point in time throughout the
stream sequence, only the most recent data pointxJ is needed
to incrementally update all the cluster components. Therefore,
the memory requirements are obviously linear with respect to the
maximal number of clusters,Cmax, which is a negligible fraction
of the size of the data set.

3 TRAC-STREAMS Experimental Results

We applied TRAC-STREAMS in a single pass for several
clean and noisy data sets (all 256 X 256 binary images), with
σ0 = 100, significance level1/t2 = 0.075 for all Chebyshev

bounds. To make the order of cluster presentations easy to
follow, the data points are presented in row major format, i.e.
in increasing order of theiry-values. Hence newer clusters
are towards the bottom of the images. Fig. 1 illustrates the
results of TRAC-STREAMS for a data set with varying noise
contamination rates, showing robustness in both location and
scale, achieved in a single pass over the data set, with the number
of clusters limited to a modestCmax = 10 clusters. Fig. 2
illustrates the effect of the upper limit on the number of clusters
Cmax on TRAC-STREAMS for a noisy data set (65% noise),
showing stability and robustness in both location and scale. When
Cmax is less than 8 for this data set, one or more clusters
will be missed depending on their density and age. Fig. 3
illustrates the effect of the time constantτ that affects the speed
of forgetting older clusters (hence, the ability to track evolving
clusters), showing robustness and a continuous adaptation to new
clusters. Whenτ is less than 3000, one or more older clusters will
be forgotten by the time all the data points have been presented.
As expected, the smaller the value ofτ , the faster is the forgetting.
This desirable property illustrates how the proposed approach can
be tuned to provide slow or fast evolvability with the input data
stream. Again, this time dependent adaptation is optional since it
is easy to setτ = ∞ (i.e., infinite memory, hencee−1/τ = 1) if
all clusters are to be maintained, of course subject to the maximal
limit Cmax. Finally Fig. 4 illustrates the performance for noisy
data sets with varying cluster configurations, densities, sizes, and
shapes. Even though we do not discuss the details of how TRAC-
STREAMS can be generalized to approximatearbitrary shapes,
showing robustness and reasonable approximation. We repeat the
same validation experiment with the BIRCH data set consisting of
100,000 data points presented as a stream in the order of columns.
Fig. 5 shows the learned synopsis (cluster contours corresponding
to a Chebyshev inlier bound/diameter oft2σ2, learned at several
points in the stream, superimposed on the data stream seen so
far. Notice how the learned synopsis closely approximates the
last τ = 5000 data points, showing ability to evolve with new
concepts, and to forget old concepts. Finally, to show the linear
scalability, we plot the total number of distance computations (the
most expensive computation/step of the algorithm, independently
of time unit) in Fig. 6.

(a) (b) (c)

Figure 1. Results of TRAC-STREAMS for varying noise
contamination rates (Cmax = 10): (a) 0% noise, (b)15% noise,
(c) 65% noise

4 Conclusions

We presented a new approach for tracking evolving and noisy
data streams by estimating clusters based on density, while taking
into account the possibility of the presence of an unknown
amount of outliers, the emergence of new patterns, and the
forgetting of old patterns. As expected, the smaller the value
of the application dependent time constantτ , the faster the
forgetting of old clusters. Hence, TRAC-STREAMS can be tuned

621

(a) (b) (c) (d)

Figure 2. Results of TRAC-STREAMS for varying Maximal
number of clusters allowedCmax (τ = 4000): (a) Cmax = 10,
(b) Cmax = 20, (c) Cmax = 30, (d) Cmax = 40

(a) (b) (c) (d)

Figure 3. Results of TRAC-STREAMS with varying time
constantsτ that affects the speed of forgetting older clusters
(ability to track evolving clusters) (Cmax = 10): a) τ = 1000,
(b) τ = 2000, (c) τ = 4000, (d) τ = ∞ (infinite memory, hence
e−1/τ = 1)

to provide slow or fastevolvability with the input data stream.
Even though we did not discuss the fate of older clusters, it is
clear that a policy, such as delegating older clusters to secondary
storage (archiving) before they die and wither away, is easy to
implement. The maximal limit on the number of clusters,Cmax,
can be set according to the memory constraints, and even if it is
too small, the densest clusters will be estimated correctly.

The approach proposed in this paper differs from existing
methods in two ways:(i) a robust clustering process is used to
resist unknown rates of outliers,(ii) the goal of stream clustering
is to form a continuously evolving synopsis or summary of the
data stream, while focusing more on themore recent data. This
is essentially a different framework from all existing approaches,
because the stream mining is to run without any stoppages
or reconfigurations. This framework is useful in cases like
monitoring live data such as network activity data, newsfeeds
and Web clickstreams, because in most of these applications, the
goal is to use the mined patterns for a subsequent stage (e.g.
intrusion detection, information filtering, or Web personalization)
that depends on the accuracy of the summary, with an emphasis
on the most recent state of the system.

References

[1] Daniel Barbara, “Requirements for clustering data streams,”ACM
SIGKDD Explorations Newsletter, vol. 3, no. 2, pp. 23–27, 2002.

[2] S. Babu and J. Widom, “Continuous queries over data streams,” in
SIGMOD Record’01, 2001, pp. 109–120.

[3] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-
dimensional regression analysis of time-series data streams,” in
2002 Int. Conf. on Very Large Data Bases (VLDB’02), Hong Kong,
China, 2002.

[4] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering
data streams,” inIEEE Symposium on Foundations of Computer
Science (FOCS’00), Redondo Beach, CA, 2000.

[5] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A framework for
clustering evolving data streams,” in29th VLDB conference, 2003.

(a) (b) (c) (d)

Figure 4. Results of TRAC-STREAMS for different data sets
(Cmax = 10, τ = ∞): (a) 2 clusters with different density, (b)
2 clusters with different size, (c) 6 clusters with different sizes
and densities, (d) data with a mixture of spherical and elongated
clusters (note how different shapes are approximated by several
spherical clusters)

Figure 5. BIRCH data - Learned Synopsis in one pass at 13,000
and 51,000 points respectively. Only the data points that have
been seen so far are shown in light color. Sinceτ = 5000 only
the last 10,000 data points (shown in black) are summarized by a
synopsis limited not to exceedCmax = 25 clusters.

[6] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient
data clustering method for large databases,” inACM SIGMOD
International Conference on Management of Data, New York, NY,
1996, pp. 103–114, ACM Press.

[7] P. Bradley, U. Fayyad, and C. Reina, “Scaling clustering algo-
rithms to large databases,” inProceedings of the 4th international
conf. on Knowledge Discovery and Data Mining (KDD98), 1998.

[8] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez, “Tecno-
streams: Tracking evolving clusters in noisy data streams with a
scalable immune system learning model,” inThird IEEE Inter-
national Conference on Data Mining (ICDM’03), Melbourne, FL,
November 2003.

[9] M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on
data streams,” 1998.

[10] P. J. Huber, Robust Statistics, John Wiley & Sons, New York,
1981.

[11] Alexander Hinneburg and Daniel A. Keim, “An efficient approach
to clustering in large multimedia databases with noise,” inKnowl-
edge Discovery and Data Mining, 1998, pp. 58–65.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Number of samples

Number
of distance

computations

Figure 6. Linearity of the algorithm in terms of total number of
distance computations (BIRCH data set)

622

