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Abstract tracking evolving data streams. Fractal Clustering [1] defines
clusters as sets of points with high self-similarity, and assign:
We present a new approach for tracking evolving and noisy data new points in clusters in which they have mininfralctal impact
streams by estimating clusters based on density, while taking intoFractal impact is measured in terms of thiactal dimension
account the possibility of the presence of an unknown amount of outliersand this can be shown to be related to the scale parameter
the emergence of new patterns, and the forgetting of old patterns. contamination rate. In [8], we presented a recent approach fc
mining evolving data streams, called TECNO-STREAMS, that
keywords: evolving data streams, robust clustering, dynamic is based on artificial immune systems as a type of evolutionar

clustering, stream clustering, scalable clustering optimization of a criterion function. The most important desirable
feature of TECNO-STREAMS was the incorporation of temporal
1 Introduction weights that allow gradual forgetting of older portions of the data

stream, and better focus on the newer data. In this paper, w

An explosion of applications generating and analyzitega present a different approach, based on analytical optimizatio
streamshas recently added new unprecedented challenges fothstead of evolutionary computation, and based on a differer
clustering algorithms if they are to be able to track changing criterion function, that explicitly optimizes the stream synopsis in
clusters in noisy data streams using 0n|y the new data pointdﬁhe presence of unknown noise contamination rates. CluStrea
because storing past data is not even an option [1, 2, 3, 4, 5][5] is a recent stream clustering approach that perfovito-
Data streams are massive data sets that arrive with a throughpuélusteringwith the new concept gbyramidal timeframesThis
that is so high that the data can only be analyzed sequentially andfamework allows the exploration of a stream over different
in a single pass. There have been several clustering algorithm§me windows, hence providing a better understanding of the
that were designed to achieve Sca|abi|ity [6, 7] by processingGVO'Ution of a stream. the main idea in CluStream is to divide the
the data points in an incremental manner, or by processing thelustering process into an online process that periodically store
data points in small batches. However these algorithms still treatsummary statistics, and an offline process that uses only the:
all the objects of the data set the same way without makingSummary statistics. Micro-clusters are an extension of BIRCH's
any distinction between old data and new data. Therefore Cluster Feature (CF) with temporal statistics, and the increment:
these approaches cannot possibly harellelvingdata, where  updating of the CF is similar to BIRCH. BIRCH, in turn, solves
new clusters emerge, old clusters die out, and existing clusterg LS criterion because the first order statistics are nothing mor
change. More recently, several algorithms have been proposethan the mean centroid values. For this reason, CluStream wi:
and discussed more specifically within the context of streamnot designed to handle outliers. However, the attractiveness
mining [1, 4, 5]. STREAMS [4] strives to find an approximate CluStream stems from its clear and interpretable ability to tracl
solution that is guaranteed to be no worse than a number opvolving clusters, because all the results can be viewed in terms «
times the optimal. The optimal solution is based on minimizing shapshots at certain time horizons, and not just as static snapshc
the Sum of Squared Distances (SSQ), which is the same as th&he approach proposed in this paper differs from CluStream il
one used in K Means and LS estimates. The ordinary Leastwo ways:(i) a robust clustering process is used to resist unknow!
Squares (LS) method to estimate parameters is not robust becaugates of outliers(ii) the goal of stream clustering is to form a

its objective function > d2, increases indefinitely with the ~continuously (non-stoppable) evolving synopsis or summary o

j=1"3" . .
residualsi; between the" data point and the estimated fit, with  {he data stream, while focusing more on there recent data
In this paper, we present a new approach for tracking evolv

N being the total number of data points in a data set. Hence,, ‘ " APk
extreme outliers with arbitrarily large residuals can have an!Ng @nd noisy data streams by estimating clusters based on de
while taking into account the possibility of the presence of

infinitely large influence on the resulting estimate. All clustering SI: _
techniques that are based on LS optimization, such as K Means" unknown amount of outliers, the emergence of new pattern:

BIRCH [6], and Scalable K Means [7], inherit LS’s sensitivity to 21d the forgetting of old patterns. Our approach, call&AC-
noise. Also, STREAMS finds a solution that approximates the S TREAMSTrackingRobustAdaptiveClusters in evolving data

entire data stream from beginning to end without any distinction STREAMS is a new approach for mining noisy and evolving data

between old data and newer data. Hence it has no provision foP'éams that is based on a fast iterative optimization approac
amounting to robust statistical estimation, and is free of assumy
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streams (TRAC-STREAMS) that achieves robustness in locationfrom the stream, and assuming that the parameters do not chan
and scale without any assumptions about the contamination ratsignificantly as a result of a single point, each old weight would
or scale value. In Section 3, we present our experimental resultsexperience a decay as follows to enable the forgetting process:
Finally, in Section 4, we present our conclusions.

—1

(2.2) Wij, g = €7 Wi (J-1)
2 Mlnln‘g Evolving and NO'S)_’ Daf[a Streams with At any pointJ in the stream (after encounteridgiata points),
Density Based Cluster Estimation we search for the optimalensecluster locations:; ; and scale

valuess? by optimizing the following criterion

In a dynamic environment, the data from a data stréaare
presented to the cluster model one at a time, with the cluster cen- 7 2 ;
troid and scal_e measures re-updated .Wlth- each presentation. Itis o) {j” _ Z wij =L —a Z wm]}’i —1,...,0,
more convenient to think of the data indgx,as monotonically  ci.s.0:.s = W A
increasing with time. That is, the data points are presented in thq2 3)
following chronological orderx;, - - - ,x. Hence after encoun- The weightw;; ; can also be considered as the degree of mem
tering J points from the data stream, a cluster is characterizedpership of data point; in theinlier set or the set of good points.
by its location or centee; ;, its scales? ;, and its age; which,  The first term of this objective function tries to achieve robust-
to make independent of any time units, can be set to the numbepess by minimizing the scaled distances of the good points to th
of points that have been streaming since the cluster’s conceptiopptimal cluster locations. The second term consists of the neg:
att; = 0. The set of clusters and their characteristic parametersiye of a soft estimate of theardinality (sum of weights) of the
define asynopsig9] or good summary representation of the data injier (non-outliers) set which is approximately proportional to
stream. to summarize more basic statistics of a stream. As Wehe estimated outlier contamination rate. Hence, by maximizing
will see below, because the currency of the stream is taken intahis cardinality, the objective function tries to use as many gooc
account to define the influence zone around each cluster, the syrpoints (inliers) as possible in the estimation process, via their hig
opsis will also reflect a more current summary of the data streamyyeights, so that efficiency is least compromised. Thus the corr
that will evolve with the changes in the data stream. In order pined effect is to optimize thdensity i. e., the ratio of the total
to adhere to the memory requirements of a stream scenario, theumber of good points to the scale. In the first term, the dis:
maximal number of clusters is fixed to an upper boufid..,  tances are normalized by the scale measure for several reaso
that depends on the maximum size allocated for the stream synfirst, this normalization counteracts the tendency of the scale t

opsis. Each candidate cluster defines an influence zone over thenrink towards zero. Second, unlike the absolute distafice
data space. However, since data is dynamic in nature, and has @z . ) Lo .
temporal aspect, data that is more current will have higher influ- 77, 'S @ relative measure that indicates how close a data poir
ence compared to data that is less current. The influence zone i to the center compared to the inlier bound. Therefore, usins
defined in terms of a weight function that decreases not only withthis normalized measure is a more sensible way to penalize th
distance from the data to the cluster prototype, but also with theinclusion of outliers in the estimation process in a way that is
time since the data has been presented to the cluster model. It igddependent of scale. Finally, this normalization makes the twc

convenient to think of time as an additional dimension to allow terms of the objective function comparable in magnitude. This

the presence of evolving clusters. relieves us from the problem of estimating a value dowhich
Definition 1 (Adaptive Robust Weight): For thei*" cluster,C;, otherwise would depend on the data set’s contamination rate ar
i=1,---,C, we define the robust weight of th¢" data point,  scale. Hence, the value afis fixed as follows:

at the moment when the total size of the data stream accumulated

to J inputs:xy, Xg, - - -, X, -, X7, &S a=1

d2. )
ij (J—j
i TJ)

,( ) For the generab-dimensional casey should be close te, since
(21) Wij,J = Wy J (d?j) —e \*%

the ratio of the first term to the second term approaches the ave
age of ay? distribution for normal distributions (a reasonable ap-
where is an application-dependent parameter that controlsproximation, given the huge size of most data streams). Finally
the time decay rate of the contribution from old data points, andwe should note that?; should be a suitable distance measure,
hence how much emphasis is placed on the currency of the clustefajlored to detect desired shapes, such as the Euclidean distar
model compared to the sequence of data points encounteregbr spherical clusters. Similar to M-estimators [10], the criterion
so far. This robust weight model is similar to the one used in (2.3) attempts to limit the influence of outliers by replacing the
with an immune system inspired method proposed earlier [8] square of the residuals with a less rapidly increasing loss functio
to learn a dynamic stream synopsis, however the optimizationof the data value. Since the objective function depends on se\
criterion function as well as the optimization method are radically eral variables, we can use an alternating optimization techniqu
different. d7; is the distance from data poiRy to cluster location  where in each iteration a set of variables is optimized while fixing
ci,.7. 0] ; is a scale parameter that controls the decay rate of theall others. This approach forms the basis of most analytical op
weights along the spatial dimensions, and hence defines the sizémization based clustering algorithms where coupled parametel
of an influence zone around a cluster prototype. Data samplesre optimized alternatively, including Expectation Maximization
falling far from this zone are considered outliers. At any point based algorithms, DENCLUE [11], as well as most K Mean vari-
J in the stream sequence, the weight function of data pojnt  ants such as BIRCH.
in clusterC; decreases geometrically with the age £ J — j)
or number of samples encountered sincewas introduced. = THEOREMZ2.1. Optimal Incremental Center Update: Given the
Therefore the weights will favor more current data in the learning previous centers resulting from the past — 1) data points,
process. Note that subsequently to each new point that is read; ;_, the new centroids that optimize (2.3) after th¢ data
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point is given by
_ 1
e 7c; AW g1 +wig gx;
_1
(6 W1+ wiJ,J)

(2-4) Ci,g =

whereW; ;_, = Z}I;f Wij(1—1) = Wi g—2 +wig—1),(7-1)

2.1 Learning New data points and Relation to Outlier
Detection

Definition 2 (Potential Outlier): A potential outlieris a data
point that fails the outlyingness test for the entire cluster model
The outlier is termedotential because, initially, it may either

is the sum of the contributions from previous data points, be an outlier or a new emerging pattern. It is only through the

X1, X2, XJ—1-

Proof. Since the time dependency has been absorbed into th

weight function, and by fixing the previous centroids, _1,
scaless? ;_;, and weightsw; ;, the equations for centroid up-
dates are found by solving

0Ji.7
f)ci,J

7 ad?;
= 2 Z Wig,.J

’L ] 1

acz J

Each term that takes part in the computatiorcpf; is updated

individually with the arrival of each new data point using the data, other than scale.

continuous learning process that lies ahead, that the fate of th

éJutIier will be decided. If it is indeed a true outlier, then it will

form no mature clusters in the cluster model. Several upper ta
bounds exist in statistics that bound the total probability that som
random variable is in the tail of the distribution, i.e., far from
the mean. Markov bounds apply to any non-negative randor
variable, and hence do not depend on any knowledge of th
distribution. However, dighter bound can be obtained using
Chebyshev bounds$ a reliable estimate of scale is available.
Again, no assumptions are made about the distributadnthe
Because TRAC-STREAMS provide

old values, and adding the contribution of the new data samplerobust scale estimates, we will use Chebyshev bounds to te

For instance, |fd2 is the squared Euclidean dlstand%
lx; — cisl? then we need to solve the following system of
equations for the center components.

E wLJJ

This results in the centeri,,] given by

J
Wi g%
CiJ = 7 =
> =1 Wij,J

— Cj J) 0.

i,J

J—1
Z —1 Wij, gXj + W4y, JXJ

J—1
D=1 Wij,g + Wiy

The above equation can be rewritten in the incremental form of
(2.4) by substituting (2.2) into the contributions of the previous

J — 1 points in the first term of the sum in the above numerator.

THEOREM2.2. Optimal Incremental Scale Update: Given the
previous scales resulting from the p&st-1) data pomtsal J_1
the new scales that optimize (2.3) after tHé data point is given
by

2+ a) 6_%0'1-2’J71WD1‘7J—1 + wij,sdi;
2+ a) (e_%WDi,,pl + wiJ-,szzJ>

WD; ;-1 = Z;]_l wi—nd;; =  WDij 2 +
Wi(T—1),(J— l)dl(J 1 is the sum of the contributions from
previous data pointsgy, -+, X _1.

(25) o7, =

Proof. By fixing the previous values of the centroids; ;_1,

scaleso? ;_, and weightsw; ;, the equations for scale updates

are found by solvmg‘m =

61UU J

0 and substituting=_ =

,J
ﬁwij”}. The scale parameter of thgh cluster is g|ven by
’ J
2 Z 1 Wis, Jdu
oy (2+a) ST wasd . the rest of the proof proceeds

similarly to the proof for the incremental centers.

Therefore, the algorithm for incrementally adjusting the op-
timal cluster locations and scales will consist of updates of the
prototype parameters, followed by updates of the scale paramef2.7)
ter and the weights in an iterative fashion, with the arrival of each

whether a data point is an outlier.
Chebyshev Bounds:The Chebyshev bound for a random vari-
able X with standard deviation is:

1
(2.6) PT‘{|X—M|ZtU}§t—2

Testing a Data Point or a New Cluster for Outlyingness with
respect to clusterC; using Chebyshev Bound with Significance
Probability 1/t2: (2.6) can be rearranged in the form

Pr{|X — p|* > t?¢*} < %, or equivalently

el <

t21
—1x—pl?
202

Pr<e

This results in the following test for outlier detection:

IF w5 < e(="*/2) THEN

x; is an outlier with respect to clustéy

The same test is used in the algorithm to decide when a new clu
ter is created, since points from new clusters can be considered
outliers with respect to old clusters. Note that the quartfity’
is referred as th€hebyshev Bounftom now on, and it is also
used to plot the contours of the learned clusters later on, since
is considered as the distance from the centers that includes all tl
inliers with probabilityl — 72 We also use the same test to es-
timate the cardinalityV; for each cluster centroid as the number
of points from the input data stream that fail the outlier test.
Testing the compatibility of clustersC; and C;, with scaIeSJZ% J
and o7 ; using Mutual Chebyshev Bounds with Significance
Probability 1/¢2: Given the distance between these two clusters
d2, if the clusters are compatible, then (2.6) can be rearranged |
the form

2 2
ik dik

27 < emt?/2% < t% andPrie > <e /24 < iz

Prie

This results in the following test for testing cluster compatibility:
IF (dist (C;,Ci) < t?02 AND dist (C;,Ci) < t?0}) THEN
MergeC; andCy
The cluster with higher density defined in (2.8), is the one tha
remains. Its scale is inherited, while the its new center becomes

ci, Wi g+ cp Wi
Wig+ Wi

Cnew,J =

new data point in the stream. Note that only the cumulative statis-Cluster Testing Based on DensityThe density of the*" cluster
tics need to be stored for each cluster at any given instant. Hencéfter presenting/ data points from the stream is defined as
the synopsis consists of a summary of all the clusters, where eacfpllows:

cluster is represented by the tuple consisting,of, crij, Wi g,
andWD,; ;.
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Clusters {) with low density §;) or zero cardinality ;) are
eliminated as follows:

IF (6(s) < Omin) ORN; =0 THEN

B+~ B-— C(Z')

Finally we give the steps of the TRAC-STREAMS algorithm
below:

TRAC-STREAMS:

bounds. To make the order of cluster presentations easy |
follow, the data points are presented in row major format, i.e.
in increasing order of theiy-values. Hence newer clusters
are towards the bottom of the images. Fig. 1 illustrates the
results of TRAC-STREAMS for a data set with varying noise
contamination rates, showing robustness in both location an
scale, achieved in a single pass over the data set, with the numk
of clusters limited to a modest,,,., = 10 clusters. Fig. 2
illustrates the effect of the upper limit on the number of clusters
Crnaz ON TRAC-STREAMS for a noisy data set50 noise),

Tracking Robust Adaptive Clusters in evolving data STREAMS showing stability and robustness in both location and scale. Whe

Fix the maximal number of cluster prototypés,,...;
Initialize centroids; ;j = x;,1 =1, ,Cpqa;

Initialize scales; ; = 0o, i =1, -+, Cpq;

Initialize aget; = 0,1 =1,---, Cpaz;

Initialize the sumsV; ; = WD, ;=0,i=1,---,Craz;
Initialize C = Ci0z;

Ciaz IS less than 8 for this data set, one or more clusters
will be missed depending on their density and age. Fig.

illustrates the effect of the time constanthat affects the speed
of forgetting older clusters (hence, the ability to track evolving
clusters), showing robustness and a continuous adaptation to ne
clusters. When is less than 3000, one or more older clusters will

o

Let cluster modeB = C;UC,U- - -UC¢, and cluster representativesbe forgotten by the time all the data points have been presente

afterJ data points, b€, = (c; j,0i.5,ti, Wi, 7, WD, 1);
FOR J =1TO N DO { / single pass over the data stream
FORi=1TO C DO
Compute distancel?;, and robust weightp; ; ;;
IF C < Cynax AND x; is an outlier in all clusters; THEN {
Create new clusteh,: B «— BUC, withk =C +1;

Cr =X,

O = 00,

Initializet), = Wy, ; = WDy y =0;
C=C+1

FORi=1TO C DO {
Updateo? ; using (2.5);
Updatec; ; using (2.4);
UpdateW; j = Wi j—1 +wij s ;
UpdateW D; y = WD; j—1 +wij yd;; ;
Update age; =t; + 1 ;
¥
FORi=1TO C DO
IF (5“) < 5min) ORN; =0 THEN{
B«— B—-C;;
c=C-1,

Test Clusters for Compatibility and Merge Compatible Clusters;

}

2.2 Computational Complexity

TRAC-STREAMS necessitates the iterative computations of

As expected, the smaller the valuergthe faster is the forgetting.
This desirable property illustrates how the proposed approach ce
be tuned to provide slow or fast evolvability with the input data
stream. Again, this time dependent adaptation is optional since
is easy to set = oo (i.e., infinite memory, hence /™ = 1) if

all clusters are to be maintained, of course subject to the maxim:
limit C,,... Finally Fig. 4 illustrates the performance for noisy
data sets with varying cluster configurations, densities, sizes, ar
shapes. Even though we do not discuss the details of how TRAC
STREAMS can be generalized to approximatbitrary shapes,
showing robustness and reasonable approximation. We repeat t
same validation experiment with the BIRCH data set consisting o
100,000 data points presented as a stream in the order of columr
Fig. 5 shows the learned synopsis (cluster contours correspondit
to a Chebyshev inlier bound/diametert8&2, learned at several
points in the stream, superimposed on the data stream seen
far. Notice how the learned synopsis closely approximates th
last = 5000 data points, showing ability to evolve with new
concepts, and to forget old concepts. Finally, to show the linea
scalability, we plot the total number of distance computations (the
most expensive computation/step of the algorithm, independentl
of time unit) in Fig. 6.

(©)

(b)

distances and weights for each data vector, followed by the center Figyre 1. Results of TRAC-STREAMS for varying noise

and scale parameter.
data vectors. Hence the computational complexity of TRAC-
STREAMS is O(N). At any point in time throughout the
stream sequence, only the most recent data pojnis needed

These are all linear in the number of contamination rates{... = 10): (a) 0% noise, (b)15% noise,

(c) 65% noise

to incrementally update all the cluster components. Therefore,
the memory requirements are obviously linear with respectto theq  Conclusions

maximal number of clusters},, ..., which is a negligible fraction
of the size of the data set.

3 TRAC-STREAMS Experimental Results

We applied TRAC-STREAMS in a single pass for several
clean and noisy data sets (all 256 X 256 binary images), with
oo = 100, significance levell /t> = 0.075 for all Chebyshev

621

We presented a new approach for tracking evolving and nois
data streams by estimating clusters based on density, while takir
into account the possibility of the presence of an unknowr
amount of outliers, the emergence of new patterns, and th
forgetting of old patterns. As expected, the smaller the value
of the application dependent time constant the faster the
forgetting of old clusters. Hence, TRAC-STREAMS can be tuned



Figure 2. Results of TRAC-STREAMS for varying Maximal
number of clusters allowe@', . (- = 4000): (a) Crnax = 10,
(b) Crnaa = 20, (€) Crnae = 30, (d) Crae = 40

(b)

Figure 3. Results of TRAC-STREAMS with varying time
constantsr that affects the speed of forgetting older clusters
(ability to track evolving clusters){nq.. = 10): a) 7 = 1000,
(b); = 2000, (c) 7 = 4000, (d) 7 = oo (infinite memory, hence
e—l T 1)

to provide slow or fasevolvability with the input data stream.

Even though we did not discuss the fate of older clusters, it is
clear that a policy, such as delegating older clusters to secondary

storage &rchiving before they die and wither away, is easy to
implement. The maximal limit on the number of clusters, ..,

can be set according to the memory constraints, and even if it is [6] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient
too small, the densest clusters will be estimated correctly.

The approach proposed in this paper differs from existing

methods in two ways(i) a robust clustering process is used to
resist unknown rates of outlier§i) the goal of stream clustering

is to form a continuously evolving synopsis or summary of the

data stream, while focusing more on timere recent dataThis

is essentially a different framework from all existing approaches,
because the stream mining is to run without any stoppages
This framework is useful in cases like
monitoring live data such as network activity data, newsfeeds

or reconfigurations.

Figure 4. Results of TRAC-STREAMS for different data sets
(Chnae = 10,7 = 0): (a) 2 clusters with different density, (b)

2 clusters with different size, (c) 6 clusters with different sizes
and densities, (d) data with a mixture of spherical and elongated
clusters (note how different shapes are approximated by several
spherical clusters)

5 10 15 20 25 3 35 40 45 25 o 5 1o 15 20 25 30 35 40 45

Figure 5. BIRCH data - Learned Synopsis in one pass at 13,000
and 51,000 points respectively. Only the data points that have
been seen so far are shown in light color. Simce- 5000 only

the last 10,000 data points (shown in black) are summarized by a
synopsis limited not to excedd,,... = 25 clusters.

data clustering method for large databases,” AGM SIGMOD
International Conference on Management of Dataw York, NY,
1996, pp. 103-114, ACM Press.

[7] P. Bradley, U. Fayyad, and C. Reina, “Scaling clustering algo-

rithms to large databases,” Rroceedings of the 4th international
conf. on Knowledge Discovery and Data Mining (KDD98998.

[8] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez, “Tecno

streams: Tracking evolving clusters in noisy data streams with ¢
scalable immune system learning model,” Tihird IEEE Inter-
national Conference on Data Mining (ICDM’'03Melbourne, FL,
November 2003.

and Web clickstreams, because in most of these applications, the[9] M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing of

goal is to use the mined patterns for a subsequent stage (e.g.

data streams,” 1998.

intrusion detection, information filtering, or Web personalization) [10] P. J. Huber, Robust Statistics John Wiley & Sons, New York,

that depends on the accuracy of the summary, with an emphasis

on the most recent state of the system.
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Figure 6. Linearity of the algorithm in terms of total number of
distance computations (BIRCH data set)



