Learning Action Strategies For Multi-agent Planning Domains By Reinforcement Learning

Esin SAKA
Outline
Planning Learning

• Planner
 - Algorithm
 - Performs a search on possible actions
 - Finds a plan of action

• Strategy
 - Algorithm
 - Solves planning problems in a particular domain

• Aim:
 - Given any planning domain
 - Produce a strategy to solve problems in that domain
Input

- Description of domain
 - Names of predicates
 - Models of actions
 - Support predicates (optional)
- Problems in domain
- Evaluation function
Output

- Decision list
 - Ordered list of existentially quantified rules
Example

• Problem:
 - There are
 • n blocks
 • 1 agent
 - Move all the blocks
Example (cont.)

- **Input**
 - **Predicates**
 - arm_empty()
 - on(x1, x2)
 - ontable(x1)
 - clear(x1)
 - hold(x1)
 - **Actions**
 - arm_empty() & clear(x1) -> pop(x1) -> hold(x1)
 - (i.e: del ontable(x1) & del clear(x1) & del arm_empty() & add hold(x1))
 - hold(x1) -> drop(x1) -> arm_empty()
Example (cont.)

- Output
 - arm_empty() & clear(x1) -> pop(x1)
 - hold(x1) -> drop(x1)
Example-2

- Problem:
 - There are
 - n blocks
 - 2 agents
 - Move all the blocks
Example (cont.)

- **Input**
 - **Predicates**
 - arm_empty(a1)
 - on(x1, x2)
 - ontable(x1)
 - clear(x1)
 - hold(a1, x1)
 - **Actions**
 - arm_empty(a1) & clear(x1) -> pop(a1, x1) -> hold(a1, x1)
 - (i.e: del ontable(x1) & del clear(x1) & del arm_empty(a1) & add hold(a1, x1))
 - hold(a1, x1) -> drop(a1, x1) -> arm_empty(a1)
Example (cont.)

- Evaluation function
 - #blocks moved
 - #blocks - #blocks not moved -> (i.e # of blocks moved or holding)

- Output
 - arm_empty(a1) & clear(x1) -> pop(a1, x1)
 - hold(a1, x1) -> drop(a1, x1)
 - arm_empty(a1) & clear(x1) -> pop(a1, x1)
 - hold(a1, x1) -> drop(a1, x1)
 - arm_empty(a1) & clear(x1) -> pop(a1, x1)
 - hold(a1, x1) -> drop(a1, x1)
 - hold(a1, x1) -> drop(a1, x1)
Algorithm

- Enumerate all rules under consideration
 - Enumerate all examples in data set
 • Enumerate all possible bindings
 - Initialize the decision list to empty list
 - While the data set is not empty
 • Choose the rule with best evaluation result
 • Add it to the end of decision list
 • Remove all examples that are covered by this rule from data set
Conclusion & Future Study

- Works on simple problem
- Test on constrained blocks world domain
 - Multi-agent version of classical blocks world domain
- Evaluation function is important
 - Try different RL’s like Q-learning or QACE.
Bibliography

Thank you for your attention 😊